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Abstract
Medical imaging is a rich source of invaluable information necessary for clinical judgements.
However, the analysis of those exams is not a trivial assignment. In recent times, the use of
deep learning (DL) techniques, supervised or unsupervised, has been empowered and it is
one of the current research key areas in medical image analysis. This paper presents a survey
of the use of DL architectures in computer-assisted imaging contexts, attending two different
image modalities: the actively studied computed tomography and the under-studied positron
emission tomography, as well as the combination of both modalities, which has been an
important landmark in several decisions related to numerous diseases. In the making of this
review, we analysed over 180 relevant studies, published between 2014 and 2019, that are
sectioned by the purpose of the research and the imaging modality type. We conclude by
addressing research issues and suggesting future directions for further improvement. To our
best knowledge, there is no previous work making a review of this issue.

Keywords Deep learning · Computed tomography · Positron emission tomography ·
Medical imaging

1 Introduction

Medical imaging has been an integral part of medical procedures, used for early detection,
diagnosis, monitoring, and treatment assessment of different medical conditions in a non-
invasive manner (Kasban et al. 2015). It involves different techniques to visualise biological
processes. These imaging techniques are called imaging modalities and are divided into two
major paradigms—anatomical or structural modalities and functional modalities (Bushberg
and Boone 2011). Each type of technology provides distinctive information about the partic-
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ular area of the body being studied. In the spectrum of a broad range of imaging modalities
are the specialities of computed tomography (CT) and positron emission tomography (PET).

Most interpretations of medical images require experienced clinicians. Given wide vari-
ations of interpretations of images leading to different diagnoses and being a laborious task
which may be translated into high costs and human errors, health professionals can benefit
from computer-assisted interventions (Chen et al. 2013; Li and Nishikawa 2015). Conse-
quently, machine learning associated with image processing techniques has been widely
used in the domain of medical imaging analysis by assisting image interpretation (Shen et al.
2017a).

DL has become a dominant research topic with applications in countless fields. It can
be seen as an improvement of artificial neural network (ANNs) with more layers of virtual
neurons increasing the predictive power from data. Data representations or features have been
traditionally extracted from examples within a pre-processing step. The major advantage of
DL techniques is the detection of relevant data representations in a self-taught way. Instead
of extracting features manually, it can learn from examples enabling the process to map from
raw input images to the final classification. There is no loss of information occurring due
to indirect extraction processes that are commonly characterised by feature extraction from
previously segmented objects.

There are several strategies to employ deep models. One application is the train from
scratch or full training. Given an input, the architecture is trained in an end-to-end way to
ultimately be used as a classifier. However, effective model training has obstacles (Tajbakhsh
et al. 2016). It requires large computational and memory resources, and a huge amount
of labelled data which are not always available and are difficult to obtain in the medical
domain, making the dataset not adequate to train a full network on. Moreover, by training
deep architectures, over-fitting and convergence issues often arise (Erhan et al. 2009). A
possible direction to be explored is the extraction of image features from the input to learn
representations from visual objects (Bengio et al. 2013). The challenge of this usage is to
interpret the learned features and discernwhether or not the learned features can be used alone
for the task or if it is necessary to combine them with handcrafted features (Greenspan et al.
2016). Furthermore, a system can apply knowledge learned from prior tasks to new fields
that reduce the cost of optimising parameters and the network architecture. A pre-trained
network can be exploited either directly or by transfer learning (Greenspan et al. 2016). Two
transfer learning strategies have been used. Fine-tuning a pre-trained network on medical
data and using a pre-trained network as a feature extractor (Litjens et al. 2017).

DL has established noteworthy progress and its applications have spread to the entire
field of healthcare. Medical image analysis is not an exception. Other works have studied the
application of DL in general medical image analysis (Litjens et al. 2017; Shen et al. 2017a),
in modalities such as CT and magnetic resonance imaging (MRI) (Jung et al. 2017; Erickson
et al. 2017) and in molecular images particularly in cancer (Xue et al. 2017). CT is a popular
and firmly studied modality in medical imaging, in contrast to PET. The validation of DL
in PET context is an under-studied topic. These modalities have a direct impact on the final
diagnosis, staging and treatment planning in many diseases and have been widely adopted
in the clinical practice. It is thus of great importance that the information extracted from
each modality is exploited and discussed to understand further directions to integrate both
modalities. The major contribution of this paper lies in the exploitation of DL techniques in
the application of advanced imaging analysis. We believe that this survey not only would be
helpful for younger researchers, as it provides a comprehensive review on the application of
DL for CT, PET and the use of both CT and PET, but also for senior researchers who want
to explore future directions detected in the several analysed research problems. To our best
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knowledge, there is no previous work making a review of this issue. We opted not to include
other imaging modalities since there are already covered in the previously mentioned works.

The remainder of this paper is organised as follows. Section 2 covers the main DL tech-
niques that have been used for medical image analysis. Section 3 analysis the distribution of
the reviewed works. Section 4 depicts relevant works about contributions of DL to segmen-
tation, classification, detection and other important tasks in medical image analysis. Finally,
in Sect. 5 some conclusions and future directions are discussed.

2 Preliminaries

The concepts of the main DL techniques that have been used for medical image analysis are
explained for a better understanding of the differences between the discussed approaches.
The description is divided into supervised—convolutional neural network (CNN) and recur-
rent neural network (RNN)—and unsupervised—auto-encoder (AE), stacked auto-encoder
(SAE), variational auto-encoder (VAE), restricted Boltzmann machine (RBM), deep belief
network (DBN), and generative adversarial network (GAN)—learning models. The training
dataset of supervised models includes input data and the respective response values. From it,
the supervised learning algorithm seeks to create a model that can make predictions of the
response values for unseen data. Unlike supervised models, the training data of unsupervised
models comprises examples without any corresponding target values (Hastie et al. 2001).
First of all, as most deep architectures are based on ANNs, a brief explanation is given.

2.1 Artificial neural networks

A generic ANN is composed of one or more layers of neurons through which a signal is
propagated. Feature vectors are fed to the first layer. Each feature is assigned a weight by
each neuron of this layer, which outputs a value based on the response of an activation
function to the weighted sum of all features (plus an optional bias). The last layer is the
output layer. The training process involves adjusting the parameters: the weights and bias
of the neurons are iteratively updated with the purpose of minimising a error between the
obtained and expected output.

The simplest ANN is a perceptron, consisting of only one neuron layer which is a linear
classifier, i.e., an algorithm that classifies input by separating two categories with a straight
line. However, not all the classification tasks are linearly separable. By adding neuron lay-
ers, the model is referred to as a multi-layered perceptron (MLP) that is usually applied in
scenarios where data is not linearly separable. The intermediate layers are known as hidden
layers and can have an arbitrary number. TheMLP is typically trainedwith a backpropagation
algorithm.

When the network has many layers it is often called a deep neural network (DNN).

2.2 Convolutional neural network

Among the various DL models, CNNs have become a promising type of models for medical
image analysis. Without the need to manually customise hand-crafted features, they can
retrieve hierarchical features by elaborating high-level features from low-level ones.Although
this technique was first reported in 1980 (Fukushima and Miyake 1982), it only gained
relevance when Krizhevsky et al. (2012) won the ImageNet challenge in 2012, with the
AlexNet architecture.
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There are some widely used models, such as LeNet, AlexNet, VGG19, GoogLeNet and
ResNet, just to name a few (Litjens et al. 2017). Fully convolutional networks (FCNs) byLong
et al. (2015) become attractive as they allowed segmentation delineations to be created from
any image size and solved the problem of low resolution outputs by the degradation of input
image quality caused by successive convolution operations and pooling layers (Litjens et al.
2017). A fully connected layer is not always necessary and can be replacedwith a convolution
layer (Gu et al. 2018). In FCN, the fully connected layers are transformed as convolutions
and the up-sampling is made using deconvolutional layers. Inspired by FCN, Ronneberger
et al. (2015) proposed the widely used U-Net architecture that was later extended to a three-
dimensional (3D) version, 3D U-Net (Çiçek et al. 2016). A full description of a usual CNN
architecture can be found in Gu et al. (2018).

2.3 Recurrent neural network

RNNs use time-series information and have been applied in scenarios with sequential input
and delayed decision, managing the data in a different manner than CNN. It processes and
learns features of sequential input and outputs another sequence (Feng et al. 2017). As
another family of ANNs, it is composed of input nodes, output nodes and hidden nodes,
where connections between units form a cycle with a one way direction creating a dynamic
temporal behaviour. In contrast to CNNs, which have a feed-forward network structure,
RNNs have internal memory (Lee et al. 2017).

So far, supervised models have been discussed. The following described deep models are
used for unsupervised feature representation learning.

2.4 Auto-encoder and stacked auto-encoder

AE are networks with the purpose of projecting the input into a lower dimensional sub-
space representing its dominant latent or compressed structure by the minimisation of the
reconstruction error between the input and output values of the network. SAEs are used to
implement the idea of greedy layer-wise unsupervised learningwith the aim of improving the
representational power by using the activation values of the hidden units of one AE as input to
the next AE (Erhan et al. 2010). The different layers of the network represent different levels
of information (Shen et al. 2017a). To restrain the AE from learning a superficial solution,
the model can be trained to recreate the input from a degraded version with the addition of
noise. This configuration is called the denoising AE (Litjens et al. 2017).

2.5 Variational autoencoder

VAE is a generative model that estimates the Probability Density Function (PDF) of the
training data (Kingma and Welling 2014). VAEs are called “auto-encoders” only because
the final training objective that derives from their setup does have an encoder and a decoder,
and resembles a traditional autoencoder (Doersch 2016). Unlike sparse autoencoders, there
are generally no tuning parameters analogous to the sparsity penalties. And unlike sparse
and denoising autoencoders, we can sample directly from the distribution P(X) [without
performing Markov Chain Monte Carlo (MC)].

The encoder is an ANN whose input is a datapoint x , and the output is a hidden represen-
tation z. The decoder is another ANN whose input is the representation z, and outputs the
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parameters of the PDF. The loss function of the VAEs is the negative log-likelihood with a
regularizer. One of the reasons that make VAEs is that they can be trained with stochastic
gradient descent.

2.6 Restricted Boltzmannmachine and deep belief network

As described by Fischer and Igel (2014), RBMs are a sub-type of Boltzmann machines.
The latter is used to learn and adjust its parameters to fit the probability distribution to the
training data. Thus it can be considered as a probabilistic graphical model, also known as
Markov random fields (MRFs). The purpose is, based on samples, to learn significant aspects
of an unknown target distribution providing the distribution hidden in the training data.
After successful learning, an RBM can be used as a generative model that allows sampling
from the learned distribution. RBMs are compoosed of an input layer with visible units that
correspond to the components of an observation and a hidden layer that possesses the latent
input representation with the dependencies between the components of observations. Each
neuron is connected to all the neurons in the other layer but there are no connections between
neurons in the same layer. A DBN is a multi-layer architecture, constructed by stacking
multiple building blocks composed of RBMs, in a hierarchical manner and fine-tuning the
resulting deep network to learn high-level representations (Shen et al. 2017a).

2.7 Generative adversarial networks

In short, GANs are composed of two parts, a Generator (G) and a Discriminator (D), compet-
ing among them to generate realistically looking images (G) and distinguish between real and
synthetically generated images (D). This framework corresponds to a minimax two-player
game (Goodfellow et al. 2014). G is set against an adversary D, which learns to determine
whether a sample is from the model distribution or the data distribution. As an illustration, in
Goodfellow et al. (2014) it is suggested to think ofG as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while D is analogous to the
police, trying to detect the counterfeit currency. Competition in this game drives both teams to
improve their methods until the counterfeits are indistinguishable from the genuine articles.

A variation to GANs, are the conditional GAN (cGAN). cGANs learn a mapping from
observed image x and random noise vector z, to y. In this way, these networks not only learn
the mapping from input image to output image, but also learn a loss function to train this
mapping (Isola et al. 2017).

2.8 Medical imagingmodalities

The imaging modalities considered in this review are following described. An illustration is
given in Fig. 1.

2.8.1 Computed tomography

CT is a structural imaging procedure that integrates multiple X-ray projections taken from
different angles by rotating the X-ray tube around the body to produce cross-sectional images
of areas inside the body. Simultaneously, a detector array, at an opposite location of the X-
ray tube, collects the transmission projection data, which is based on the principle that the
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Fig. 1 Example of a CT (top) and a PET (bottom) scans. Volumes are represented by an axis (left), a sagital
(middle) and a coronal (right) views

density of the tissue passed through by the X-ray beam can be measured by calculation
of the attenuation coefficient (Bushberg and Boone 2011). In a CT slice, the grey levels
correspond to X-ray attenuation that reflects the proportion of X-rays scattered or absorbed
as passing through each voxel. X-ray attenuation is primarily a function of X-ray energy and
the composition of the material being imaged (McCollough et al. 2015). There are limitations
inherent to radiologic imaging studies that limit their diagnostic accuracy (ACC) such as the
lack of functional information. Also, radiation exposure is a risk during CT examinations
as it involves the attenuation of X-rays that interact by a combination of absorption events
and scattering events and lead to the deposition of radiation dose in the patient (Brenner and
Hricak 2010). However, the clinician chooses to perform CT exams when the benefits of the
examinations far outweigh the radiation doses received (Lin 2010).

2.8.2 Positron emission tomography

PET is a nuclear imaging technique that enables the observation of metabolic processes via
the injection of radiolabeled tracers, detection of the emitted radiation, and reconstruction
of the radiolabeled tracer distribution. This technique is based on the detection of annihi-
lation photons produced after positron emission from a radiolabeled tracer, which follows
a specific molecular biological pathway (Prassopoulos and Efthymiadou 2016). The sig-
nallers are positron emitting nuclides and the overall tracer is administered as an intravenous
injection, usually labelled with oxygen-15, fluorine-18, carbon-11, nitrogen-13 or gallium-
68 (Wadsak and Mitterhauser 2010). The detached positron proceeds along the surrounding
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Fig. 2 Distribution per year of papers related to works with DL over the period 2000–2017

material until it loses nearly all its energy. At this moment, the positron interacts with an
electron and they annihilate each other by producing two gamma-ray photons emitted in
opposite directions. Ideally, only the coincidence photons are registered (if the annihilation
photons are detected within a limited time frame or coincidence detection) while random
or scattered events are rejected (Townsend 2004). When photons reach the detectors, their
energy is converted into light which is converted to electric signal. In the end, tomographic
images are reconstructed through the application of algorithms and the biodistribution of
the tracer is visualised. 18F-fluorodeoxyglucose (FDG) is the most common PET tracer
due to its remarkable characteristics for physiological applications (Vaquero and Kinahan
2015). Its distribution reflects the distribution of glucose inside the body and thus has high
sensitivity in detecting malignancies, and is routinely applied clinically for staging and mon-
itoring treatment (Lin et al. 2015). Positron emission tomography (PET) imaging modality
is characterised by the absence of identifiable anatomical structures caused by low contrast
and resolution for precise anatomical localisation (Moses 2011). The spatial resolution is
generally inadequate for anatomic localisation of pathology (Townsend 2008).

3 Overview

By performing a search onWeb of Science Thomson Reuters website using “Deep Learning”
as the query and selecting “article” as the type of document, it is readily seen that researchers
have taken notice ofDL approaches since the number of papers has been substantially increas-
ing since 2000 (Fig. 2), reaching more than 3000 publications in 2017. This growth is mostly
explained by the increasing number of application domains in which DL techniques have
been playing an important role.
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Fig. 3 Literature review protocol

Figure 3 shows a flowchart of the protocol used in the Literature Review (Nazir et al.
2019; Asadi et al. 2019; Domingues et al. 2019). First, four main research questions were
identified. These include:

– How is DL being used to analyse CT scans?
– How is DL being used to analyse PET scans?
– What are the benefits and key challenges of DL in medical imaging?
– How can DL contribute to aid specialists in their daily clinical practice?

Next, the sources to be consulted were selected. We have used four well-known databases,
Web of Science, Scopus, PubMed, and Springer. The search strings included a combination
of the keywords: DL, CNN, medicine, health, CT, PET and their derivations. The results
were scanned by merging identical entries. They were then screened first with basis on the
titles and abstracts. The selection criterion was to retrieve works that used DL techniques
to analyse CT and/or PET scans. Moreover, only works written in English were considered.
When pertinent, citations within the articles were added to the pool of papers. Works that
cite the ones already in the pool were also verified. Having selected the papers of interest,
they were carefully read in order to extract the main goal of the work, the anatomic interest,
the methods used, the evaluation metrics and the characteristics of the dataset used in the
experiments, the main results, and any other relevant information. This information was
organised and the present document was written.

Some of the characteristics of the 182 reviewed papers can be seen in Fig. 4. It can be
observed that most papers deal with a classification problem, followed by segmentation and
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Fig. 4 Statistics on the reviewed papers. Distribution per goal of the paper (top-left), distribution per type of
exam (top-right), distribution per year (bottom)

then detection. Less attention has been paid to other types of problems. Concerning the data
used, the is a very high prevalence of CT, followed by PET. To combine information from
both types of images is still under-studied. The evolution per year of the selected papers
mimics the one already illustrated in Fig. 2. The apparent decay in 2019 is only related to
the fact that the search for the papers was made in the first trimester of 2019.

4 Literature review

This section describes the contributions of DL techniques to various generic tasks in medical
image analysis: detection (Sect. 4.1), segmentation (Sect. 4.2), classification (Sect. 4.3), and
others (Sect. 4.4), focusing on two different types of image exams: CT and PET.

Thefirst three sections summariseworks on each part of a typical computer-aided detection
(CAD) pipeline. Detection works include the task of localisation of region of interests (ROIs)
or volume of interests (VOIs). Segmentation refers to the extraction of a contour from a ROIs
or VOIs. Classification is the categorisation into classes. The last section summarises other
works, namely in the improvement of image quality (Sect. 4.4.1), reconstruction of dynamic
PET (Sect. 4.4.2), extraction of time of flight (TOF) information from the detector signals
(Sect. 4.4.3), image generation (Sect. 4.4.4), and the study of techniques that allow the
application of a smaller radiation dose to the patient (Sect. 4.4.5).

4.1 Detection

Detection of objects, such as organs, landmarks or lesions in medical images, is an important
pre-processing step in classification, for retrieval of medical images from databases, and
may benefit radiological workflow (Domingues and Cardoso 2013). Some works with DL
techniques applied with the purpose of detection of landmarks are revised next with CT,
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PET and applications that use both CT and PET information. The main characteristics of the
analysed studies are summarised in Tables 1, 2, 3 and 4.

4.1.1 CT applications

A big pleura of works has already been published on detection using CT data. To keep this
section from being too long, conference works are only summarised in Table 2. Other works
and their summary is given in Table 1.

Liu et al. (2015) detect exophytic lesions, a subset of renal lesions, by (1) exploiting effi-
cient belief propagation to segment kidneys, (2) establishing an intrinsic manifold diffusion
on kidney surface, (3) searching for potential lesion-caused protrusions with local maximum
diffusion response, and (4) exploring novel shape descriptors, including multi-scale diffu-
sion response, withmachine learning to classify exophytic renal lesions. Experimental results
on the validation dataset with computed tomographic colonography (CTC) of 167 patients
revealed that manifold diffusion significantly outperformed conventional shape features and
resulted in 95% sensitivity with 15 false-positives (FPs) per patient for detecting.

Using a combination of full training and transfer learning, Shin et al. (2016) investigated
the influence of different factors in deepCNNs on two specificCAD tasks, thoraco-abdominal
lymph node (LN) detection and interstitial lung disease (ILD) classification. The thoraco-
abdominal LN datasets were composed of 388 mediastinal LNs in 90 patient, and 595
abdominal LNs. The ILD dataset was composed of 905 image slices from 120 patients
with six lung tissue types. They exploited different CNN architectures—CifarNet, AlexNet,
OverFeat, VGG16 and GoogLeNet—with a variation of parameters and number of layers.
Also, they explored the impact of dataset scales on performance. Finally, the benefits of
transfer learning were investigated from non-medical to medical image domains. In their
many experiments, 0.85 area under the curve (AUC) on the mediastinal LN detection and
0.92 on the abdomen LN detection was achieved. For the ILD, 0.53 and 0.79 of overall clas-
sification ACC were obtained with slice-level and patch-based classification, respectively.
Their main conclusions were that CNN architectures with 8 to 22 layers were useful for CAD
problems. Transfer learning from a large-scale annotated database to CAD problems proven
to be worthwhile. The inferences made could be useful recommendations for the design of
new CAD systems.

Wolterink et al. (2016) presented a method for automatic coronary artery calcification
quantification in cardiac CT angiography. Their method made use of pairs of CNN to extract
texture features from triplanar two-and-a-half-dimensional (2.5D) and volumetric 3D input
patches. The dataset consisted of 250 cardiac CT exams divided into two sets. The first
50 exams were used to train the first part of the algorithm and the remaining 200 exams
were used to train and evaluate the second part. The first CNN selected voxels likely to be
coronary artery calcification that were further classified by the second CNN to distinguish
between coronary artery calcification and negatives voxels. One difference was the purely
convolutional nature with no pooling layers and fully connected layers were implemented as
convolutions, allowing for fast voxel classification. In all the experiments, the fusion of 2.5D
and 3D information outperformed their individual performance, with the best result of 71%
lesion sensitivity and 0.48 FP error per scan.

For anatomical body parts identification on transversal slices, Yan et al. (2016) designed
a two stage DL method. In the pre-train stage, a CNN was trained to extract discriminative
patches from the training slices in a multi-instance way to exploit the local information,
instead of using the entire slice. The second step consisted of a boosting stage using selected
local patches. They performed a comparison study with both traditional classifiers—logistic
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regression (LR) and support vectormachine (SVM)—and otherDL based approaches—CNN
trained on the whole image, local patch-based CNN without boost, and local patch-based
CNN boosted without additional non-informative class. The method was applied to 7486
transversal slices of CT scans divided into 12 anatomical classes and the proposed method
achieved the best results with 92.23% of classification ACC. To investigate the capability of
CNN to discover discriminative features, the learned hidden activation on each intermediate
layer was extracted and further used to train a SVM classifier. The best F1-score on testing
set was 0.88, concluding that features of higher layers were better for the classification task.

Belharbi et al. (2017) aimed at spotting the third lumbar vertebra (L3) slice within a whole
body CT scan. They compared the performance of a fully trained CNN composed of four
convolutional layers followed by a fully connected output layer with pre-trained CNNs over
ImageNet dataset. The dimension of the input was converted from 3D to two-dimensional
(2D) using a frontal Maximum Intensity Projection. All the models were tested on 642 CT
exams and an extra set of 43 CT scans, annotated by the same radiologist and 3 other experts.
Pre-trained models achieved better results (AlexNet = 2.45± 2.42,VGG16 = 1.82± 2.32,
VGG19 = 1.83 ± 1.83, and GoogLeNet = 2.54 ± 4.22) concerning the average error
measured in slices when compared with the homemade CNN approach (2.78±2.48). On the
other hand, the homemade CNN required only 4.46 s per CT scan to find the L3 slice what
could allow the integration of the system into daily clinical routines while VGG16 required
an average of 13.28 s per CT scan.

Similarly, deVos et al. (2017) developed an automatic system for localisation of anatomical
structures in 3D images as a 2D detection task, which means that the structures were first
detected on2D images slices extracted fromorthogonal planes.With the use of an independent
CNNs, the anatomical targets were detected on each axial, coronal and sagittal slices. Next,
3D bounding boxes were created by integrating the result of the CNN in all slices, summing
their outputs. A bounding box network (BoBNet) architecture was used consisting of eight
convolutional layers. Three series of CT images were used—200 chest low-dose CT (LCT),
100 cardiac CT angiography, and 100 abdomen CT scans. The authors claimed to have
obtained an accurate method to localise multiple structures, particularly the left ventricle
with 4.5 mm for centroid distance (CD) between automatic and reference bounding box, 3
mm for wall distance between automatic and reference bounding box walls, and 2.5 s of
processing time.

Vivanti et al. (2017) describe a method for automatic detection and segmentation of
tumours in longitudinal liver CT studies and for liver tumours burden quantification. The
method integrates information from the scans, the baseline known tumours delineations, and
a tumour appearance priormodel in the form of a global CNN. Its outputs are the new tumours
segmentation in the follow-up scan, the tumour burden quantification in both scans, and the
tumour burden change. Experimental results on 246 tumours, 97 of which were new tumours,
from 37 longitudinal liver CT studies with radiologist approved ground-truth segmentation,
yields a true-positive (TP) new tumours detection rate of 86 versus 72% with stand-alone
detection, and a tumour burden volumetric overlap error (VOE) of 16%. The authors claim
that, unlike other deep learning-based methods, this method does not require large tagged
training sets.

Wang et al. (2017b) aims at detecting subcutaneous fat areas (SFA) and visceral fat
areas (VFA). The proposed CAD framework consists of two steps with two CNNs namely,
Selection-CNN and Segmentation-CNN. The first CNN was trained using 2240 CT slices
to select abdominal CT slices depicting SFA and VFA. The second CNN was trained with
84,000 pixel patches and applied to the selected CT slices to identify fat-related pixels and
assign them into SFA and VFA classes. Comparing to the manual CT slice selection and fat
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pixel segmentation results, the ACC of CT slice selection using the Selection-CNN yielded
95.8%, while the ACC of fat pixel segmentation using the Segmentation-CNN was 96.8%.

Different loss functions can be applied efficiently in different applications and it is there-
fore important to study their influence on the results, namely in the way of penalising
straightforward examples and the robustness to labelling noise. Barbu et al. (2018) com-
pared the effect of four loss functions for training deep CNNs in LN detection. The dataset
was formed by 176 CT volumes containing 388 mediastinal LNs and 595 abdominal LNs.
The four loss functions considered were the logistic loss, the differentiable approximation
of the SVM loss, the Lorenz loss and a modified version of the tangent loss. LN candidates
were obtained using a random forest (RF) approach and a multi-label fusion from datasets
containing mediastinal and abdominal LNs. As input to the CNN, 36 triplets of orthogonal
cross sections were used, extracted at random directions and scales. The authors concluded
that the commonly used logistic loss based on softmax function may not always be the most
appropriate choice. The Lorenz loss obtained the best performance with an improvement of
3% in detection rate at 3 FP per scan compared to the logistic loss function.

Blau et al. (2018) address the detection of simple renal cysts as an incidental finding in
a real clinical setting. A combined 3D distance map of the kidneys and surrounding fluids
provides initial candidates for cysts. ACNN then classifies the candidates as cysts or non-cyst
objects. Performance was evaluated on 52 abdominal CT containing over 70 cysts. By setting
the minimal cyst diameter to 10 mm, the algorithm detected 59/70 cysts (TP rate = 84.3%)
while producing an average of 1.6 FP per case.

Tomita et al. (2018) present and evaluate a system that can detect incidental osteoporotic
vertebral fractures (OVFs) in chest, abdomen, and pelvis CT examinations. The system
leverages a CNN to extract radiological features from each slice in a CT scan. These extracted
features are processed through a feature aggregation module to make the final diagnosis for
the full CT scan. Several techniques are explored for feature aggregation, including the use
of a long short-term memorys (LSTMs) network. The system was trained and evaluated on
1432 CT scans, comprised of 10,546 2Ds images in sagittal view. It achieved an ACCs of
89.2% and an F1-score of 90.8%. The authors claim that the results match the performance
of practising radiologists.

Diniz et al. (2019) propose a computational methodology capable of detecting spinal cord
in planning CT images. The pipeline consists of the following four steps: (1) images acquisi-
tion, (2) initial segmentation, (3) candidates segmentation and (4) candidates classification.
Initial segmentation is made with an adaptive template matching; candidate segmentation
with an intrinsic manifold simple linear iterative clustering (IMSLIC); and candidate clas-
sification with a CNN. The methodology was applied on 36 planning CT images provided
by The Cancer Imaging Archive (TCIA), and achieved an ACC of 92.55%, specificity of
92.87% and sensitivity of 89.23% with 0.065 of FPs per image.

Gerard et al. (2019) propose a supervised discriminative learning framework for simul-
taneous feature extraction and classification. The proposed framework, called FissureNet,
is a coarse-to-fine cascade of two CNNs. The coarse-to-fine strategy alleviates the chal-
lenges associated with training a network to segment a thin structure that represents a small
fraction of the image voxels. FissureNet was evaluated on a cohort of 3706 subjects with
inspiration and expiration CT scans from the COPDGene clinical trial and a cohort of 20
subjects with 4-dimensional computed tomography (4DCT) scans from a lung cancer clinical
trial. On both datasets, FissureNet showed superior performance compared to a deep learning
approach using the U-Net architecture and a Hessian-based fissure detection method in terms
Precision–Recall AUC. The overall Precision–Recall AUC for FissureNet on the COPDGene
dataset was 0.980 and on the lung cancer dataset was 0.966.
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Ghesu et al. (2019) reformulate the detection problem as a behaviour learning task for an
artificial agent. The modeling of the anatomy appearance is coupled with the object search
in a unified behavioural framework, using the capabilities of deep reinforcement learning
and multi-scale image analysis. In other words, an artificial agent is trained not only to
distinguish the target anatomical object from the rest of the body but also how to find the
object by learning and following an optimal navigation path to the target object in the imaged
volumetric space. The approach is evaluated on 1487 CT volumes from 532 patients. The
authors claim to successfully detect several anatomical structures with no failed cases, while
also improving the detection-speed, achieving unmatched real-time performance.

Xie et al. (2019a) develop a pulmonary nodule detection frameworkwith 2DCNN. Firstly,
the structure of Faster R-CNN is adjusted with two region proposal networks and a deconvo-
lutional layer to detect nodule candidates, and then three models are trained for three kinds of
slices for later result fusion. Secondly, a boosting architecture based on 2D CNN is designed
for FP reduction. The misclassified samples are kept for retraining a model which boosts the
sensitivity. Finally, the results of these networks are fused to vote out the final result. Exper-
iments are conducted on LUNA16 dataset, and the sensitivity of nodule candidate detection
achieves 86.42%. For the FP reduction, the sensitivity reaches 73.4% and 74.4% at 1/8 and
1/4 FPs/scan, respectively.

Table 1 resumes the characteristics of the previously discussed works and Table 2 resumes
the characteristics of conference works with the aim of detecting landmarks on CT applica-
tions. The dataset is indicated with the sub-type of CT acquisition as well as the number of
instances.

Conclusions Under the application of DL techniques concerningCTmodality, the detection
task has been mostly approached as a full training problem using CNNs with 1D, 2D or 3D
convolutions. Fewer works have integrated these techniques as transfer learning and deep
feature extractors. The preponderance of the use of CNN can be explained by the fact that this
architecture is known to capture relationships between adjacent pixels, which is fundamental
in detecting landmarks. In this sense, other techniques should be explored. For instance, a AE
or a stacked denoising auto-encoder (SDAE) which could be useful to extract latent-space
representation encoded into the ROI of detection.

From the Table 1, it is observed that DL techniques have been applied in a wide range
of anatomical applications. Not only with the aim of detecting one particular structure, but
also to detect several structures in one system which significantly increases the complexity
of the proposed problem. However, the detection task has been simplified in many works to a
2D approach with the CT already restricted to the zone of interest, rather than a whole-body
3D approach. A variety of evaluation metrics for landmarks detection have been used. With
high FP rates, we can verify that automatic detection methods have not evidenced sufficiently
robust results for clinical use.

Detection is highly susceptible to variation in medical images caused by differences in
image acquisition, anatomy, and pathology among subjects. Real applications require robust
detection systems as missing a lesion or landmarks on a scan can have serious consequences
for both the patient and the clinician. One way to achieve that could be to increase the amount
of training data as well as the inclusion of heterogeneity on the training data with images
obtained in different acquisition and patient conditions.
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4.1.2 PET applications

All of the works found concerning detection on PET consider the identification of normal
FDG uptake and excretion (sFEPU) (Afshari et al. 2018; Deng et al. 2017; Bi et al. 2017b).
Identification of normality is important since normal cases can be screened-out from the
process, leaving the specialists more time to focus on more difficult cases (Bessa et al. 2014).

sFEPUs can be incorrectly identified as anomalies. Having this in mind, Bi et al.
(2017b) develop a method for the detection and classification of these regions. A multi-scale
superpixel-based encoding (MSE) is used to group sFEPU fragments into larger regions.
Feature extraction is then made via domain transferred CNNs. There regions are then classi-
fied into one of the sFEPU classes (brain, bladder, heart, left kidney, right kidney, and other
hypermetabolic fragments) using class-driven feature selection and classification (CFSC).
Experiments on 40 whole-body lymphoma PET/CT studies show that the method achieves
an average F-score of 91.73%.

The work (Deng et al. 2017) has as goal the detection of lymphomas. The pipeline has
two main blocks, one for the detection of lymphomas, another for the detection of sFEPU.
The sFEPU acts as a FP step and thus its results are subtracted from from the lymphoma
detection results. Both detection blocks have the same architecture consisting in a set of five
FCN-8 networks in parallel. Manually slices of the abdomen and chest of 30 PET images, 10
of each from lymphoma patients are used in the experiments. Identification performance is
97.10 for the right kidney; 96.68 for the left kidney; 94.80 for the bladder; 91.59 for the liver
and 83.56 for other high uptake areas. Interestingly, no results are given for the detection of
lymphomas.

Afshari et al. (2018) are also interested in localising normal active organs. The method
adapts the deep network architecture of YOLO (Redmon et al. 2016) to detect multiple
organs in 2D slices and aggregates the results to produce semantically labelled 3D bounding
boxes. Evaluation is made on 479 FDG-PET scans of 156 patients achieving an average organ
detection precision of 75–98%, recall of 94–100%, average bounding box CD of less than 14
mm, wall localisation error of less than 24 mm and a mean Intersection Over Union (IOU)
of up to 72%.

Table 3 summarises the main characteristics (anatomic interest, dataset, and best perfor-
mance results) of the analysed study.

Conclusions The importance of sFEPU detection is clear since they may cause a high
prevalence of FP detections. It would be interesting, however, to study the application of DL
to the detection of lesions or other structures using PET only.

4.1.3 CT and PET applications

Two works were found that combine information from both CT and PET. Both works use
CNNs, but while in Teramoto et al. (2016), it is used for feature extraction only, in Xu et al.
(2018) the full pipeline is DL. The third work, Kumar et al. (2018) also uses a full DL for
the detection of ROIs. More detail on each work follow next and are summarised in Table 4.

Teramoto et al. (2016) work aimed at developing an automated scheme for the detection of
lung tumours integrating PET and CT data with a multi-stream CNN. In their first study, they
achieved a high sensitivity accompanied by a high number of FPs, 17 per case. After applying
an active contour model (ACM) they improved their system, achieving a sensitivity of 90.0%
with 9.8 FPs/case.With this work, theywanted to further improve their technique by lowering
the FPs rate using a CNN. The overall implementation scheme is described next. First, nodule
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candidates were located using CT and PET images separately using different algorithms: for
CT the region was enhanced using an ACM followed by segmentation through thresholding
and labelling and PET images were binarized to detect regions of increased uptake. The two
resulting images were then merged and combined using the logical OR function. In order
to eliminate FPs in the initial candidates while maintaining the value of TPs, an ensemble
method using a multi-step classifier consisting of two features extractors—shape from CT
and metabolic feature from PET analysis and the other by a CNN followed by a two-step
classifier rule and SVMs. The architecture of the CNN consisted of three convolution layers,
three pooling layers, and two fully connected layers. The authors evaluated the detection
performance using 104 PET/CT images obtaining a sensitivity of detection of 90.1%,with 4.9
FPs/case. The results showed that the CNN extracted features are valuable for FP reduction.

Xu et al. (2018) implemented two CNNs, V-Net andW-Net, for lesion prediction and seg-
mentation with the intention of detecting a multiple myeloma bone lesion in 3D whole body
data. The V-Net architecture aimed at performing volumetric image segmentation through
3D convolutions both on CT and PET images. To combine extracted features from both
modalities, they cascaded two V-NETs to form a W-Net. The method was evaluated on 12
clinical PET/CT data. The results demonstrated that the W-Net architecture provided best
results (sensitivity = 73.50%, specificity = 99.59%, precision = 72.46%, dice = 72.98%)
for segmentation and lesion detection with multimodal information when compared with
the V-Net architecture tested on each modality independently. Furthermore, they compared
DL techniques with traditional machine learning methods such as RF, k-nearest neighbours
(kNN), and SVM with the first approach outperforming the classical ones that confirmed
the advantage of DL approaches in handling lesion heterogeneities (sensitivity = 89.71%,
specificity = 99.68%, precision = 88.82%, dice = 89.26%). This study also validated the
advantage of the combination of PET and CT in providing discriminative features for the
characterisation of the disease without manually extracting handcrafted features.

Kumar et al. (2018) present a CNN that learns to fuse complementary anatomical and
functional data from PET/CT in a spatially varying manner, for the detection of different
ROIs. The novelty is the ability to produce a fusion map that explicitly quantifies the fusion
weights for the features in each modality. To achieve this, the CNN comprises four main
components: two encoders (one for each modality), one co-learning and fusion component,
and a reconstruction component. The used dataset comprises 50 FDG-PET/CT scans of
patients with pathologically proven nonsmall cell lung cancer (NSCLC). The findings from
region detection (lungs, mediastinum, tumors, and background) experiments demonstrate
that the approach achieves a significantly higher ACC (p < 0.05) than several baseline
CNN-based methods for multi-modality image analysis.

Table 4 summarises the main characteristics (anatomic interest, dataset, and best perfor-
mance results) of the analysed studies.

Conclusions Two of the analysed studies compared traditional techniques with CNN-based
methods, proving the added value ofDL. Themain characteristics can be consulted in Table 4.
The application of DL techniques that profit from both PET and CT information is still an
under-studied topic. There is a need to continue to explore this context with the development
of more works.

4.2 Segmentation

Image segmentation consists of dividing the original image into regions. The pixels that
belong to a certain region have similar attributes, that is, pixels with the same label own
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similar features. The purpose of medical image segmentation is to obtain specific anatomical
structures (Martins et al. 2007) and/or find ROIs/VOIs such as tumours or lesions by the
identification of the contour or the interior region (Litjens et al. 2017; Vial et al. 2018). Data
mining techniques have been integrated to optimise basic methods based on grey level and
textural features (Sharma et al. 2010).

Recently,DL, and in particularCNN, has proven to be effective in segmentation tasks being
the most common topic of papers in the field of DL applied to medical imaging (Litjens et al.
2017). Class probabilities are assigned for each region, generating label probability maps.
In this context, the segmentation task is seen as the distinction of a group of pixels/voxels
which lie on the contour or interior of the object(s) of interest.

Some works with DL techniques applied through the segmentation workflow are revised
next, considering CT, PET and both CT and PET modalities. The main characteristics of the
analysed studies are summarised in Tables 5, 6, 7 and 8.

4.2.1 CT applications

The development of segmentation techniques for CT data is very widespread. For this reason,
conference papers are only gathered on Table 6, while other works are further described next
and summarised in Table 5. Furthermore, we start by presenting single class works, followed
by multi-class classification techniques.

Single-class classification

Cha et al. (2016) explored the application of a deep network for bladder segmentation. Using
ROIs, a CNN was trained to distinguish the inside and the outside of the bladder through the
likelihood estimation of a region being located inside or outside the bladder. That resulted
in a likelihood map to guide the level set segmentation. After the application of thresholding
and hole-filling methods to generate the initial contour of the bladder, 3D and 2D level sets
refined the initial segmentation propagating the surface using cascading level sets. Their
method was evaluated using 173 CT urography cases hand-segmented reference contours.
The deep method based likelihood achieved a better segmentation compared to traditional
approaches based on Haar features.

Dou et al. (2017) present a 3D FCN equipped with a 3D deep supervision mechanism,
called 3D DSN. 3D DSN is capable of conducting volume-to-volume learning and inference
and the 3D deep supervision mechanism can cope with the optimisation problem of gradients
vanishing or exploding when training a 3D deep model, accelerating the convergence speed
and simultaneously improving the discrimination capability. Such a mechanism is developed
by deriving an objective function that directly guides the training of both lower and upper
layers in the network, so that the adverse effects of unstable gradient changes can be coun-
teracted during the training procedure. A fully connected conditional random field (CRF)
model is employed as a post-processing step to refine the segmentation results. Validation
was made on two datasets: (i) liver segmentation from CT and (ii) whole heart and great ves-
sels segmentation from MRI. The authors claim to have achieved competitive segmentation
results with a much faster speed.

Farag et al. (2017) present a bottom-up approach for pancreas segmentation. The method
generates a hierarchical cascade of information propagation by classifying image patches at
different resolutions and cascading (segments) superpixels. The system contains four steps:
(1) decomposition of slice images into a set of disjoint boundary-preserving superpixels; (2)
computation of class probability maps via dense patch labelling; (3) superpixel classification
by pooling both intensity and probability features to form empirical statistics in cascaded
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RF frameworks; and (4) connectivity based post-processing. Dense image patch labelling is
conducted using two methods: RF classification on image histogram, location and texture
features; and CNN classification, on larger image windows. The method is evaluated on a
data set of 80 volumes, achieving a Dice coefficient of 70.7% and IOU of 57.9%.

Fechter et al. (2017) propose a random walker approach driven by a 3D CNN to segment
the esophagus. First, a soft probability map is generated by the CNN. Then, an ACM is fitted
to the CNN soft probability map to get a first estimation of the oesophagus location. The
outputs of the CNN and ACM are then used in conjunction with a probability model based
on Hounsfield Units (HU) to drive the random walker. Training and evaluation were done
on on 20 clinical and 30 publicly available datasets. Results were assessed regarding spatial
overlap and shape similarity, returning a mean Dice coefficient of 0.76 ± 0.11, an average
symmetric surface distance (ASD) of 1.36 ± 0.90 mm, and an average Hausdorff distance
of 11.68± 6.80.

Huang et al. (2017) present an automatic osteosarcoma segmentation method, based on
FCNs with multiple supervised side output layers. Supervised side output layers were added
to three FCNs layers in order to guide the multi-scale feature learning as a contracting struc-
ture, and multiple feature channels were used in the up-sampling portion to capture more
context information. The results of all the side outputs were fused to determine the final
boundaries of the tumours. Quantitative comparison with 405 osteosarcoma manual seg-
mentation results showed an average dice similarity coefficient, average sensitivity, average
Hammoude distance and F1-score of 87.80%, 86.88%, 19.81% and 0.908, respectively.

Ibragimov et al. (2017) propose a framework for segmentation of the portal veins (PVs)
for liver radiotherapy planning. The authors apply CNNs to learn the consistent appearance
patterns of the PVs and then enhance the PVs in previously unseen images. MRFs were
further used to smooth the results of the enhancement of the CNN enhancement and remove
isolated mis-segmented regions. Finally, CNN-MRF-based enhancement was augmented
with PVs centerline detection that relied on PVs anatomical properties such as tubularity and
branch composition. The framework was validated on a clinical database with 72 images
of patients scheduled for liver stereotactic body radiation therapy. The obtained accuracy of
the segmentation was 0.83 and 1.08 mm in terms of the median Dice coefficient and ASD,
respectively.

The same authors, in Ibragimov and Xing (2017) use CNNs to study consistent intensity
patterns of organ at risks (OARs). For CNNs training, a representative number of positive
intensity patches around voxels that belong to the OAR of interest, and negative intensity
patches around voxels that belong to the surrounding structures are considered. The trained
network is then applied to classify voxels in a ROI in the test image where the corresponding
OAR is expected to be located. The obtained classification results are smoothed by using
MRFs. Finally, the largest connected component of the smoothed voxels classified as theOAR
by by the CNN is extracted and dilate-erode operations are performed in order to remove
cavities of the component. Performance was validated on the segmentation of spinal cord,
mandible, parotid glands, submandibular glands, larynx, pharynx, eye globes, optic nerves,
and optic chiasm using 50 CT images, by trainning one CNNs for each case. The obtained
segmentation results varied from 37.4% Dice coefficient for chiasm to 89.5% for mandible.

Men et al. (2017) develop a deep dilated CNN-based method for segmentation of CNNs
and OARs. The method is an end-to-end architecture and employed a multiple-scale convo-
lutional architecture to extract multiple-scale context features in the early layers. In addition,
the receptive fields of dilated convolutions are enlarged at the end of the network to capture
complementary context features. The fully connected layers are replaced with fully convolu-
tional layers to achieve pixel-wise segmentation. Data from 278 patients with rectal cancer
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was used for evaluation. The proposedmethod outperformed the U-Net for all segmentations,
with an average Dice value of 3.8% higher than that of U-Net. The authors claim the method
to be invariant to the body size, body shape, and age of the patients.

Sun et al. (2017a) are interested in the segmentation of liver tumours. They design a
multi-channel FCNs frommultiphase contrast-enhanced CTs images. Because each phase of
contrast-enhanced data provides distinct information on pathological features, one network
is trained for each phase of the CTs images and their high-layer features are then fused.
The proposed approach was validated on CT images taken from two databases: 3Dircadb
and JDRD. In the case of 3Dircadb, using the FCNs, the mean ratios of the VOE, relative
volume difference (RVD), ASD, root mean square symmetric surface distance (RMSD) and
maximum symmetric surface distance (MSSD) were 15.6± 4.3%, 5.8± 3.5%, 2.0± 0.9%,
2.9 ± 1.5 mm, 7.1 ± 6.2 mm, respectively. For JDRD, the mean ratios were 8.1 ± 4.5%,
1.7± 1.0%, 1.5± 0.7%, 2.0± 1.2 mm, 5.2± 6.4 mm, respectively.

Ait Skourt et al. (2018) propose to use the U-net architecture for lung segmentation. The
architecture consists of a contracting path to extract high-level information and a symmetric
expanding path that recovers the information needed. This network can be trained end-to-end
from very few images and outperforms many methods. Experimental results on LIDC-IDRI
database show a Dice coefficient index of 0.9502.

Jackson et al. (2018) design an image segmentation tool based on 3D CNNs to detect
right and left kidney contours on non-contrast CTs. The model was trained based on 89
manually contoured cases and tested on a cohort of patients receiving therapy with 177Lu-
prostate-specific membrane antigen-617 for metastatic prostate cancer. The neural network
segmentation was able to identify right and left kidneys in all patients, returning contours
for a selected study in approximately 90 s.. Mean Dice score was 0.91 and 0.86 for right
and left kidneys, respectively. Poor performance was observed in three patients with cystic
kidneys of which only few were included in the training data. No significant difference in
mean radiation absorbed dose was observed between the manual and automated algorithms.

Lustberg et al. (2018) investigate whether using software-generated contouring will save
time if used as a starting point for manual OAR contouring for lung cancer patients. Twenty
CT scans of stage I–III NSCLC patients were used to compare user adjusted contours after
an atlas-based and CNN contour, against manual delineation. The CNN was a prototype of
deep learning contouring software (“Mirada DLC Expert” prototype, Mirada Medical Ltd.,
Oxford, United Kingdom) trained on 450 lung patients. The lungs, oesophagus, spinal cord,
heart andmediastinumwere contoured for this study.With amedian time of 20min formanual
contouring, the total median time saved was 7.8 min when using atlas-based contouring and
10 min for CNN contouring. CNN adjustment times were significantly lower than manual
contouring time for all OARs.

The aim of the study (Öman et al. 2019)was to investigate the feasibility of ischemic stroke
detection fromCT angiography using 3DCNNs. Data from 60 patients with a suspected acute
ischemic stroke of the middle cerebral artery were randomly selected for this study. Cerebral
hemispheric comparison CT angiography and non-contrast CT were studied as additional
input features. Authors claim that all ischemic lesions in the testing data were correctly
lateralised, and a high correspondence to manual segmentations was achieved. Patients with
a diagnosed stroke had clinically relevant regions labelled infarcted with a 0.93 sensitivity
and 0.82 specificity. The highest achieved voxel-wise AUC was 0.93, and the highest Dice
similarity coefficient was 0.61. When cerebral hemispheric comparison was used as an input
feature, the algorithmperformance improved.Only a slight effectwas seenwhen non-contrast
CT was included.
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Xu et al. (2019) split CT slices into image patches, and apply K-Means (KM) with two
categories twice using the mean and minimum intensity of image patch, respectively. A
cross-shaped verification, a volume intersection, a connected component analysis and a patch
expansion follow to generate a train dataset. Using the generated dataset, CNNs are trained.
The CNN architecture consists of one convolutional layer with six kernels, followed by one
maximum pooling layer and two fully connected layers. A validation experiment is then
conducted using a dataset of 201 subjects (4.62 billion patches) with lung cancer or chronic
obstructive pulmonary disease. The CNN model achieves an average F-score of 0.9917 and
an AUCs up to 0.9991 for classification of lung parenchyma and non-lung-parenchyma. The
overlap ratio reaches 0.96.

Multi-class classification

The previously discussed works applied to segmentation tasks were developed to segment
one particular anatomical structure. The next works were used for multi-class classification
to create a prediction multi-class map of each voxel to an anatomical label.

Özsavaş et al. (2014) segment the lungs, trachea/main bronchi, and spinal canal of patients
with lung cancer to use for radiation treatment planning. For this purpose, an algorithm for
inclusion of excluded pathological areas into the segmented lungs and a modified version of
the fuzzy segmentation by morphological reconstruction for spinal canal segmentation were
developed. The obtained average volume overlap ratio values range between 94.30± 3.93%
and 99.11 ± 0.26% on two different datasets, 10 patients with lung cancer and 10 thoracic
CT scans from LIDC. Furthermore, the authors obtained ASD values between the ranges of
0.28 ± 0.21 mm and 0.89 ± 0.32 mm by using the same datasets.

Yuan (2017) participated in the MICCAI 2017 Liver Tumour Segmentation Challenge
(LiTS) by developing a hierarchical framework based on fully convolutional-deconvolutional
neural network (CDNN).A simpleCDNNmodel is firstly trained to provide a quick but coarse
segmentation of the liver on the entire CT volume. Then, another CDNN is applied to the
liver region for fine liver segmentation. At last, the segmented liver region, which is enhanced
by histogram equalisation, is employed as an additional input to the third CDNN for tumour
segmentation. IOU is used as loss function when training CDNN models to eliminate the
need of sample re-weighting. The framework is trained using the 130 challenge training cases
provided by LiTS. The evaluation on the 70 challenge testing cases resulted in a mean Dice
similarity coefficient of 0.963 for liver segmentation and 0.657 for tumour segmentation, and
a root mean square error (RMSE) of 0.017 for tumour burden estimation.

Zhou et al. (2017a) created a multi anatomical structure segmentation method in 3D CT
images employing a voxel-wise multiple-class DL scheme. Their method made use of FCNs
that consist of convolution and deconvolution performed on 2D sections from 3D CT images
for pixel-wise annotation. By majority voting from multiple crossed 2D sections, the labels
were assigned to the 3D segmentation, stacking the 2D labelled results back into 3D. The
database consisted of 240 3DCT scans using the simultaneous segmentation of 19 anatomical
structures in the human torso divided into 95% for training and 5% for testing. Their own
network was trained but no convergence was observed. So, they decided to use VGG16
transfer learning demonstrating the effectiveness of transferring features learned from large-
scale datasets to the medical context. They achieved 88.1% and 87.9% of ACC in the train
and test, respectively, compared with expert annotations. Their approach exhibited flexibility
in segmenting anatomical structures with a wide range of shapes, sizes, appearances, and
many different locations through the human body, and the capacity of handling 2D and 3D
CT images.
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Chmelik et al. (2018) addresses the segmentation and classification of lytic and sclerotic
metastatic lesions by using spinal CT obtained from highly pathologically affected cases. The
problem is defined as a lesion segmentation based on simultaneous classification of individual
voxels to three categories (healthy, lytic, or sclerotic). An individual CNN architecture and
pre-processing steps, dependent on a patient data and a scan protocol, are developed. A
medial axis transform (MAT) post-processing for shape simplification of segmented lesion
candidates with RF based meta-analysis is proposed. The dataset used contained 31 patient
cases involving 626 vertebrae (whole-spine CTs were used in 8 cases). The authors claim
that the approach achieves a high flexibility—can be applied to variously affected patient
data acquired with different CT acquisition parameters. Moreover, the algorithm enables
detection, segmentation and classification of small lesions greater than 1.4 mm3 and works
also with cervical vertebrae.

Gibson et al. (2018) present a registration-free segmentation algorithm for eight organs
that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the
pancreas, the gastrointestinal tract (oesophagus, stomach, and duodenum) and surrounding
organs (liver, spleen, left kidney, and gallbladder). The proposed DenseVNet segmentation
network enables high-resolution activation maps through memory-efficient dropout and fea-
ture reuse. A multi-centre dataset with 90 subjects is used. The proposed method yielded
Dice scores of 0.78 for the pancreas, 0.90 for the stomach, and 0.76 for the oesophagus.

Trullo et al. (2019) make use of global localisation information, based on an original
distancemap that yields not only the localisation of eachorgan, but also the spatial relationship
between them. Instead of segmenting directly the OARs, a localisation map is first generated
by minimising a reconstruction error within an adversarial framework. This map, which
includes localisation information of all organs, is then used to guide the segmentation task
in a fully convolutional setting. Experimental results on CT scans of 60 patients totalling
11,084 slices are shown for automatic segmentation of the oesophagus, heart, trachea and
aorta. The authors comment to have issues with the memory requirements and point out that
additional research must be done in order to reduce the size of the system.

Zhu et al. (2019) segmentmultipleOARsdepicted inCT images of lung cancer patients.An
encoder-decoder U-Net neural network was used. The trained CNN performed the automatic
segmentation of CT images for 36 cases of lung cancer. The Dice similarity coefficient, ASD
and 95% Hausdorff distance were calculated, with manual segmentation results used as the
standard, and were compared with the results obtained through atlas-based segmentation. For
the heart, lungs and liver, both the deep CNN-based and atlas-based techniques performed
satisfactorily. For the spinal cord and the oesophagus, the two methods had statistically
significant differences.

Table 5 presents a summary of the analysed works with CT applications on segmentation
of one or several anatomic interests, while Table 6 refers to conference papers only. The type
and the number of instances of each dataset are mentioned. The best performance results are
also reported.

Conclusions To make the representation of a volumetric image easier to analyse, automatic
segmentation is an important task in medical images. Under the application of DL techniques
concerning CT modality, the segmentation problem has been mostly approached as a full
training problemusingCNNorFCN(which is amodification of aCNNasdescribed inSect. 2)
and fewer works have approached the problem by transfer learning. By analysing Tables 5
and 6, we can verify that most automatic segmentation methods have not shown sufficiently
robust results for clinical use. This ismainly due to poor image quality, different segmentation
protocols, and variations among patients (Zhao and Xie 2013). It is not straightforward to
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compare the results of the works reviewed herein. They have been applied with different
anatomical structures as targets from various public and private datasets. Each anatomical
structure requires levels of performance depending on the purpose. Besides, many evaluation
metrics for image segmentation have been employed. To validate the developed methods,
the segmentation obtained is compared with manual annotations done by a radiologist who
may emphasise diverse aspects (manual annotations are bound to be subjective). Although
the performance of the segmentation is context dependent, in general, some conclusions can
be drawn:

• Multi-class image segmentation remains a demanding and challengingproblem that needs
further exploitation as most of the discussed works were developed to segment one
particular anatomical structure.

• The development of a non problem specific network architecture or hyperparameters
appears to be an ambitious but promising approach.

• The inclusion of lesion cases is expected tomake flexible systems that are capable of deal-
ing with heterogeneous structures. However, the problem of having few representative
lesion voxels compared to non-lesioned tissue makes the problem highly unbalanced.

• The lack of transfer learning available architectures that conduct 3D operations has
repercussions in works currently under development with consequent loss of spatial
information.

4.2.2 PET applications

Accurate and reproducible delineation of tumours in PET scans remains a difficult task,
despite being crucial for delivering appropriate radiation dose, minimising adverse side-
effects of the therapy, and reliable evaluating treatment Czakon et al. (2016). Next, some
efforts for the automatising of this task are reviewed.

Czakon et al. (2016) evaluated 3D implementations of Spatial Distance Weighted Fuzzy
C-Means (SDWFCM), Dictionary-based Model (DICT) and CNN, and compared them to
classical clustering approaches: KM and Gaussian Mixture Models (GMM). The authors
tested several CNN architectures and the best, selected through a 5-fold cross-validation
process, was a 3D CNN with 3 convolutional layers followed by RELU activations with
ascending number of filters. The training dataset was provided by PETSEG challenge and
consisted of 4 scans from 3 clinical samples, 9 scans from 3 phantoms and 6 simulated scans
in 2 sets. The best results were obtained using CNN (Dice score mean: 0.86, median: 0.89).
The remaining methods performed slightly worse than CNN and similarly to each other.

Blanc-Durand et al. (2018) study the feasibility of using 18F-fluoro-ethyl-tyrosine (18F-
FET) PET for lesion detection and segmentation. A volumetric CNNwas implemented based
on a modified Keras implementation of a U-Net library with 3 layers for the encoding and
decoding paths. Thirty-seven patients were included in the experiments. All 11 lesions were
accurately detected with no false positive, resulting in a sensitivity and a specificity for
the detection at the tumour level of 100%. After 150 epochs, the dice similarity coefficient
reached 0.7911.Morphological dilatation and fixed thresholding of the predictedU-Netmask
improved the dice to 0.8231 (+ 4.1%). At the voxel level, this segmentation led to a 0.88
sensitivity, a 0.99 specificity, a 0.78 positive predictive value (PPV) and a 0.99 positive
predictive value (NPV).

Huang et al. (2018) propose a method for head and neck cancer (HNC) gross tumour
volume (GTV) contouring on PET/CT. A CNN was trained based on the two-dimensional
PET/CT images. The Dice similarity coefficient on a database of 22 newly diagnosed HNC
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Table 7 Main characteristics of the studies reviewed in Sect. 4.2.2: PET segmentation

Authors Anatomic
interest

Dataset Evaluation metrics Results

Czakon et al. (2016) Tumours PETSEG
challenge

Dice score mean,
median

0.86, 0.89

Blanc-Durand et al.
(2018)

Brain 18F-FET PET of
37 patients

Dice, sensitivity,
specificity, PPV,
NPV

0.8231, 0.88, 0.99,
0.78, 0.99

Huang et al. (2018) HNC 22 patients Dice, sensitivity,
precision

0.785, 0.764,
0.789

Smith et al. (2018) Brain Micro-PET/CT of
28 mice

Dice 0.902

Zhao et al. (2019) NPC 30 PET/CT scans Dice, PPV, sensitivity 87.47, 93.56,
82.93

patients was in the range [0.482,0.868]. A high correlation was found between automatic and
manual contours, resulting in a median volume difference of 10.9%. The median values of
Dice, sensitivity, and precision were 0.785, 0.764, and 0.789, respectively.

Smith et al. (2018) use a pre-trained VGG16 architecture consisting of 16 trainable layers
organised in blocks. A total of 28 mice were used for the study (0.25×0.25×0.25mm). The
central sagittal 2D slice and one slice either side (r-l) of the brain were extracted for each
animal. Image augmentation using rotations and skews resulted in about 5k images to fine
tune the network weights. The mean Dice value found for the test mice is 0.902. The authors
claim these results to be comparable to an automated machine-learning based state of the
art approach when tested on phantom data and well within the intra-operator variability of
manual segmentation.

Zhao et al. (2019) present amethod that uses FCNwith auxiliary paths to achieve automatic
segmentation ofNasopharyngeal carcinoma (NPC) on PET/CT images. The deep supervision
introduced by auxiliary paths can explicitly guide the training of lower layers, thus enabling
these layers to learn more representative features and improve the discriminative capability
of the model. Results of threefold cross-validation return a mean Dice score of 87.47%.

Table 7 presents a resume of the analysed works with PET applications on segmentation
of tumours. The type and the number of instances of each dataset are mentioned. The best
performance results are also reported.

Conclusions In spite of the challenge proposed in MICCAI (Hatt et al. 2018), making a
benchmark dataset of 176 images combining simulated, phantom and clinical images avail-
able to the community, there has been not a big advance in this field. Among the existing
research, Dice similarity coefficient seems to have emerged as the accepted evaluation metric
in this line of work.

4.2.3 CT and PET applications

Several authors have realised that PET and CT are complementary imaging modalities, one
showing functional and the other anatomical information. The idea is thus to use this com-
plementary information to improve segmentation performance.

Zhao et al. (2018a) develop a FCN, capable of taking into account of both PET and CT
information simultaneously for tumour segmentation. The network starts with a multi-task
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Table 8 Main characteristics of the studies reviewed in Sect. 4.2.3: CT and PET segmentation

Authors Anatomic
interest

Dataset Evaluation metrics Results

Zhao et al. (2018a) Lung PET/CT of 84
patients

Dice, classification
error, volume error

0.85, 0.33, 0.15

Zhong et al. (2018) Lung 32 PET-CT
scans

Dice 0.869 (CT), 0.760 (PET)

Lian et al. (2018) NSCLC 15 PET/CT Dice, Hausdorff 0.87, 2.36

Lian et al. (2019) NSCLC 21 PET/CT Dice, sensitivity, PPV,
Hausdorff, mean
absolute surface
distance

0.87, 0.86, 0.88, 2.42, 0.19

training module, in which two parallel sub-segmentation architectures constructed using
CNNs were designed to extract feature maps from PET and CT respectively. A feature
fusion module was subsequently designed based on cascaded convolutional blocks, which
re-extracted features fromPET/CT featuremaps using aweighted cross entropyminimisation
strategy. The tumourmaskwas obtained as the output at the end of the network using a softmax
function. The effectiveness of the proposed method was validated on a PET/CT dataset of 84
patients with lung cancer.

Zhong et al. (2018) propose an approach for the segmentation of lung tumours that com-
bines a FCN based semantic segmentation framework (3D-UNet) and the graph cut based
co-segmentation model. First, two separate deep UNets are trained on PET and CT, sepa-
rately, to learn high level discriminative features to generate tumour/non-tumour masks and
probability maps for PET and CT images. Then, the two probability maps on PET and CT are
further simultaneously employed in a graph cut based co-segmentation model to produce the
final tumour segmentation results. Comparative experiments are made on 32 PET-CT scans
of lung cancer patients.

Lian et al. (2018) propose a 3Dmethod based on unsupervised learning to jointly delineate
tumour contours in PET/CT images. The theory of belief functions is adopted to model the
uncertain and imprecise image information, and to fuse them in a stable way. To ensure
reliable clustering in each modality, an adaptive distance metric to quantify distortions is
proposed, and the spatial information is taken into account. A novel context term is designed
to encourage consistent segmentation between the two modalities. In addition, during the
iterative process of unsupervised learning, a specific fusion strategy is applied to further
adjust results for the two distinct modalities. The method is evaluated in 15 PET/CT images
for NSCLC patients. The used database is latter augmented in Lian et al. (2019).

Quantitative results of the above summarised strategies are shown in Table 8.

Conclusions On one hand, multimodal segmentation added an obstacle: the fusion of infor-
mation obtained with CT with the information obtained with PET. On the other hand, it takes
advantage of the combination of PET and CT in providing discriminative features for the
characterisation of the disease without manually extracting handcrafted features. The anal-
ysed studies validate that DL methods can leverage multimodal information. By analysing
Table 8, we can conclude that increasing the amount of data seems to be an unequivocal step
to further validate the obtained results. There is a need to continue to explore this context
with the development of more works in this regard.
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4.3 Classification

Classification of medical imaging can be separated into two major groups: exam or image
classification and lesion classification (Litjens et al. 2017). Exam classification has the pur-
pose of discovering the presence of patternswhich can be disease indicators. Commonly, each
exam is an input sample and the output is a number that represents the presence or absence
of the disease. Rather than whole-body information, lesion classification uses previously
segmented body parts (Domingues and Cardoso 2014).

Some works relying on DL techniques with the purpose of classification are revised next
for CT and PET. The main characteristics of the analysed studies are summarised in Tables 9
and 10 for CT applications, Table 11 for PET applications and Table 12 for applications that
use both CT and PET.

4.3.1 CT applications

As seen in Sect. 3, this line of work is the one that has deserved most attention. In order
to make this section readable, journal works are described and then summarised in Table 9,
whereas conference works are only present in Table 10. Moreover, due to the high prevalence
of works related to the lungs, this section is organised into two main parts, one dedicated to
Lungs and the other to other organs and anatomical structures.

Lungs

Most studies using CT images for CAD are related to lung diseases, particularly lung nodules.
Lungs are well defined as dark regions due to their particularly high air percentage and low
density. Lung nodules are highlighted in CT images, as they are dense regions that contrast
with the lung background.

Chen et al. (2015) developed a system for classification of themalignant or benign nature of
noduleswithDL techniques, aDBNand aCNN. Themethodwas tested on 2DROIs extracted
from1010 scans (LIDC-IDRI dataset). AllDBNswere pre-trained in an unsupervisedmanner
using RBMs. To evaluate the effectiveness of the DL techniques, two feature-computing
methods were performed. The first method relied on scale invariant feature transform (SIFT)
and local binary patterns (LBP) features and the kNN was utilised as a classifier. The second
method corresponds to a fractal analysis to compute coefficients that were used with the
SVM classifier. The best results were obtained with the DBN framework with 73.4% of
sensitivity and 82.2% of specificity. They concluded that both DBN and CNN (73.3% of
sensitivity and 78.7% of specificity) implementations outperformed the feature-computing
methods (75.6% of sensitivity and 66.8% of specificity for SIFT and 50.2% of sensitivity
and 57.2% of specificity for LBP).

Cheng et al. (2016) explored the benefits SDAE, a denoising version of SAE. 700 malig-
nant and 700 benign nodules were considered as the experimental dataset for data balanced
from the LIDC dataset. The training was divided into two mains steps: the pre-training and
supervised training steps. At the pre-training step, the ROIs were fed into the network and
then refined with the supervised training by the addition of three neurons. The softmax clas-
sification performed the final identification result. The performance was evaluated between
each pair of the comparing algorithms (SDAE, CURVE, RANK, and MORPH) over all 100
folds. The results showed an increase of performance induced by the SDAE-based CAD
algorithm over the conventional systems for the nodule differentiation, with a 0.1 to 0.15 of
ACC values higher than CURVE, RANK and MORPHmethods. This work was also applied
to breast ultrasound lesion.
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Yang et al. (2016) examined the influence of the application ofmodifications on the original
dataset as well as the role of data augmentation with a CNN. Best results were obtained
with a balanced dataset of 81,000 images, resulting from the application of transformations
such as rotation and scaling to the original dataset composed of 1280 images. Based on
their research, they proved that data augmentation plays an integral role in the performance
even when simple transformations are used. Also, artificial geometric nodules showed to be
ineffective in capturing the important features of real nodules, which reinforces the need for
artificial but realistic data.

Shen et al. (2017) investigated the problem of nodule malignancy suspiciousness (the like-
lihood of nodulemalignancy) classification. They presented aMulti-cropCNN (MC-CNN) to
automatically extract nodule salient information by employing a multi-crop pooling strategy
that crops different regions from convolutional feature maps and then applies max-pooling
different times. Experimental results show that themethod is capable of characterising nodule
semantic attributes (subtlety and margin) and nodule diameter, which are potentially helpful
in modelling nodule malignancy.

Song et al. (2017) compared three types of ANNs: CNN, DNN, and SAE. Those networks
were evaluated on the LIDC-IDRI database. A total of 4581 images of nodules were used
for training with 2265 benign pulmonary nodules samples and 2311 malignant pulmonary
nodules samples. The CNN had seven layers, the DNN was composed of six layers and
the SAE had five layers. The CNN architecture produced the best results among the three
networks, with 84.15%, 83.96%, 84.32% of ACC, sensitivity and specificity, respectively,
against 82.37%, 80.66%, 83.9% achieved by DNN and 82.59%, 83.96%, 81.35% achieved
by SAE. The AUC of the CNN is 0.916, of the SAE is 0.884, and of the DNN is 0.877.
An explanation given was that, unlike other structures, convolution operations could obtain
features of different dimensions simultaneously.

Gao et al. (2018) presented an ILD classification approach using CNN with the entire
image as input instead of addressing the problemwith image patches. The network contained
five convolutional layers followed by three fully-connected layers and the final softmax
classification layer. The database contained 2084 ROIs labelled from 120 patients split into
two subsets for training (100 patients) and testing (20 patients). The output consisted of
six categories: normal, emphysema, ground glass, fibrosis, micronodules, and consolidation.
Three attenuation ranges were considered and separated into patterns with lower attenuation,
higher attenuation and normal lung attenuation, formulating the CNN architecture in three
input channels. An overall ACC of 87.9% was obtained.

Liu (2018) investigates four categories of quantitative image biomarkers, including breast
density and gynecomastia quantification, bone mineral density, airway dimensions and pul-
monary nodule classification. For the classification of pulmonary nodule malignancy, a 3D
CNN is trained from scratch. Classifier ensembles of the combinations of the 3D CNN and
traditional machine learning models achieve the best performance by taking advantage of the
complementary characteristics of the traditional models and the CNN models. The dataset
was constructed by combining scans from two large screening studies, National Lung Can-
cer Screening Trial (NLST) and Early Lung Cancer Action Program (ELCAP), achieving an
AUC of 0.780.

Masood et al. (2018) propose a model based on the FCN which is used for classification
of pulmonary nodules. The initial classification is done into two classes, nodule (diseased-
Malignant or Benign) and non-nodule (normal). The images classified as nodules are further
classified into four lung cancer stages. The CNN architecture comprises of 7 convolution
with Parametric Rectified Linear Units (PReLU) with α = 0.25, 7 max-pooling layers, 7
batch normalisation layers and two dense layers with Leaky Rectified Linear Units (LreLU)

123



Using deep learning techniques in medical imaging: a… 4129

with α = 0.01, a final 1000-dimensional dense layer, deconvolutional layer with a Softmax
classifier (large margin softmax loss) on top. In terms of performance, the authors note that
it is high even in low-density small-sized pulmonary nodules.

Nardelli et al. (2018) present an approach to classify vessels into arteries and veins. The
algorithm follows three main steps: first, a scale-space particles segmentation to isolate ves-
sels; then a 3DCNN to obtain a first classification of vessels; finally, graph-cuts’ optimisation
to refine the results. The methodology was trained and evaluated on the superior and inferior
lobes of the right lung of 18 clinical cases with non-contrast chest CT scans, in comparison
with manual classification. The proposed algorithm achieves an overall accuracy of 94%.

Liu et al. (2018b) handle four solid nodule types, well-circumscribed, vascularized, juxta-
pleural and pleural-tail. The proposed method is based on multi-view multi-scale CNNs and
comprises four main stages. First, the spherical surface centred at nodules is approximated
using icosahedra and normalised sampling for CT values are captured on each circular plane
at a givenmaximum radius. Second, intensity analysis is applied based on the sampled values
to achieve estimated radius for each nodule. Third, the re-sampling is conducted, followed
by a high frequency content measure analysis to decide which planes are more abundant in
information. Finally, with approximated radius and sorted circular planes, nodule captures
are built at sorted scales and views to pre-train a view independent CNN model and then
train a multi-view CNN model with maximum pooling.

Zhao et al. (2018b) propose a CNNs to conquer the challenges of a small-scale medical
image database and small size of the nodules. A hybrid CNNs of LeNet and AlexNet is
constructed through combining the layer settings of LeNet and the parameter settings of
AlexNet. A dataset with 743 image nodule samples is built based on the 1018 scans from
LIDC-IDRI to train and evaluate the model. After finely optimising the settings of the CNNs,
the estimationACCs andAUCs can reach 0.822 and 0.877, respectively. The authors note that
the accuracy of the CNNs is significantly dependent on the kernel size, learning rate, training
batch size, dropout, and weight initialisation. Onishi et al. (2019) use GANs to generate
additional imageswhen only small amounts of data are available. Using the proposedmethod,
CTs images of 60 cases with confirmed pathological diagnosis by biopsy are analysed. The
benign nodules assessed in this study are difficult for radiologists to differentiate because they
cannot be rejected as being malignant. A VOIs centred on the pulmonary nodule is extracted
from the CTs images, and further images are created using axial sections and augmented
data. A CNNs is trained using nodule images generated by the GANs and then fine-tuned
using the actual nodule images to allow the it to distinguish between benign and malignant
nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of
benign nodules and 93.9% of malignant nodules.

Instead of training a DL model in usual end-to-end way, the following works extracted
deep learned representations to be further used as or combined with image descriptors. The
responses at each layer, including the input layer, all hidden layers, and the output layer can be
used as features and be fed into other classifiers. Briefly, a descriptor outputs a vector whose
components describe the content of a contiguous part of an image. Some handcrafted features
have considerable discriminative power and they may be complementary to deeply learned
features. Intensity, texture and shape descriptors have been used for lung cancer applications.
Intensity descriptors are frequently based on statistics computed from grey-level histograms.
Texture features are usually based on Grey Level Co-occurrence Matrix (GLCM), wavelet
and SIFT features. Regarding shape features, shape index, curvedness and diameter/size have
been used (Nogueira et al. 2017).

Ciompi et al. (2015) aimed at classifying peri-fissural nodules (PFNs) in a binary clas-
sification task using a pre-trained CNN. The dataset consisted of 1729 CT scans from the
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Dutch-Belgian randomized lung cancer screening trial with 568 nodules divided into 65 typ-
ical PFNs, 19 atypical PFNs and 484 non-PFNs. The typical and atypical PFNs were coupled
to be part of the same PFN label. The dimensionality of 3D pulmonary nodule was reduced
through a combination of several 2D views (axial, coronal and sagittal) which were fed into
the pre-trained OverFeat architecture to the first classification stage. Next, the given predic-
tion scores were combined for the second classification stage that acts as a combiner to the
3D object. Their experiments included the train of RF and SVM classifiers with OverFeat
features from only one of the 2D view of the nodule and with combinations of 2D views. The
best results obtained were provided by the features extracted with the Bag of Frequencies
descriptor followed by RF classifier achieving an AUC of 0.868.

Paul et al. (2016) aimed at extracting relevant features from NSCLC to predict survivors.
The dataset used consisted of chest CT scans distributed into 4 stages: 32 cases in stage 1, 20
in stage 2, 25 in stage 3, and 4 cases in stage 4. Deep features obtained from pre-trained CNN
trained on ImageNet (VGG-F, VGG-M, and VGG-S, with 5 convolutional layers followed
by 3 fully connected layers) were combined with traditional image features in order to train
4 usual classifiers: naïve Bayes classifier, kNN, decision trees, and RF. Two feature selectors
were used and compared, the relief-f and symmetric uncertainty. They obtained 90% of ACC
and 0.935 of AUCwith the 5most discriminative features extracted from aVGG-f pre-trained
CNN which outperform both the full set of traditional features (77.5% of ACC) and deep
features (82.5% of ACC).

de Carvalho Filho et al. (2018) use index basic taxic weights and standardized taxic
weights to differentiate the patterns of malignant and benign forms. A CNN is then applied
for classification. In the test stage, themethodology is applied to 50,580 (14,184malignant and
36,396 benign) nodules from LIDC-IDRI database. The proposed method presents achieves
ACC of 92.63%, sensitivity of 90.7%, specificity of 93.47%, and ROC of 0.934 for the
diagnosis of malignancy and benignity. The authors claim that the results demonstrate a real
rate of correct detections using the texture features.

Xie et al. (2018) propose an algorithm for nodule classification that fuses texture, shape and
deepmodel-learned information at the decision level. This algorithm employs aGLCM-based
texture descriptor, a Fourier shape descriptor to characterise the heterogeneity of nodules
and a CNN to automatically learn the feature representation of nodules on a slice-by-slice
basis. It trains an AdaBoosted back propagation ANN using each feature type and fuses
the decisions made by three classifiers to differentiate nodules. When the nodules with a
composite malignancy rate 3 were discarded, regarded as benign or regarded as malignant,
the algorithm achieved an AUC of 96.65%, 94.45% and 81.24% on LIDC-IDRI.

Yuan et al. (2018) use hybrid descriptors consisting of statistical features from multi-
view multi-scale CNNs and geometrical features from Fisher vector encodings based on
SIFT. First, the nodule radii is approximated based on icosahedron sampling and intensity
analysis. Then, high frequency content measure analysis is applied to obtain sampling views
with more abundant information. After that, based on re-sampled views, CNNs are trained
to extract statistical features and calculate Fisher vector encodings as geometrical features.
Finally, hybrid features are achieved by merging statistical and geometrical features based
on multiple kernel learning and classify nodule types through a multi-class SVM.

In Lakshmanaprabu et al. (2019), the CT scan of lung images is analysed with the assis-
tance of Optimal DNN and Linear Discriminate Analysis (LDA). The deep features are
extracted from CT images and then the dimensionality is reduced. The Optimal DNN is
applied to CT images and then optimised using Modified Gravitational Search Algorithm
for identifying nodules as either malignant or benign. The comparative results show that the
proposed classifier gives a sensitivity of 96.2%, specificity of 94.2% and accuracy of 94.56%.
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Shen et al. (2019) present an interpretable deep hierarchical semantic CNN to predict
whether a given pulmonary nodule is malignant. The network provides two levels of output:
(1) low-level radiologist semantic features, and (2) a high-level malignancy prediction score.
The low-level semantic outputs quantify the diagnostic features used by radiologists and serve
to explain how the model interprets the images in an expert-driven manner. The information
from these low-level tasks, alongwith the representations learned by the convolutional layers,
are then combined and used to infer the high-level task of predicting nodule malignancy. This
unified architecture is trained by optimising a global loss function including both low- and
high-level tasks, thereby learning all the parameters within a joint framework.

TheCNNcanbe supplementedwithmultiple sources of information as channels.However,
when a system is sensitive to small-scale nodules it becomes vulnerable to noise or artefacts
that can easily be confused with nodules. For this reason, FP reduction strategies have been
developed.

Setio et al. (2016) used multiple streams of 2D CNNs to classify each nodule candidate,
obtained by three candidate detectors designed for solid, subsolid, and large solid nodules. To
reduce the number of FPs, a multi-view method was proposed, for which sets of 2D patches
from differently oriented planes were extracted. 888 scans constituted by 1186 nodules from
the LIDC dataset were used to train. The proposed method achieved a sensitivity of 90.1%
at 4 FPs per scan. When only considering solid nodules subtype, the proposed approach
outperforms other existing CAD approaches with a CPM score of 0.637, demonstrating its
generalisation power.

Jung et al. (2018) introduce a method that uses 3D CNNs and an ensemble method to
distinguish nodules between non-nodules. A 3D CNNs with shortcut connections and a
3D CNNs with dense connections are used. The shortcut connections and dense connections
successfully alleviate the gradient vanishing problem by allowing the gradient to pass quickly
anddirectly.Connections help deep structurednetworks to obtain general aswell as distinctive
features of nodules. A checkpoint ensemble method is used to boost performance. Using
LUNA16 challenge dataset, the 3D CNNs with shortcut connections and the 3D CNNs with
dense connections using the checkpoint ensemble method achieved the highest CPM score
of 0.910. The authors claim that 3D CNNs capture the features of spherical-shaped nodules
more precisely than their 2D counterparts.

In his MSc thesis, Wang (2018) design a CAD based on a CNN. The CNN is trained
on the LUNGx challenge database to classify benign and malignant pulmonary nodules.
The architecture of the proposed ConvNet consists of 3 convolutional layers with maximum
pooling operations and rectified linear units (ReLU) activations, followed by 2 denser layers
with full-connectivities. The proposed CAD system achieved the sensitivity of 0.896 and
specificity of 8.78 at the optimal cut-off point of the receiver operating characteristic curve
(ROC) with the area under the curve (AUC) of 0.920.

Xie et al. (2019b) propose a multi-view knowledge-based collaborative (MV-KBC) deep
model to separate malignant from benign nodules using limited chest CT data. The model
learns 3D nodule characteristics by decomposing a 3D nodule into nine fixed views. For
each view, a knowledge-based collaborative (KBC) submodel is constructed, where three
types of image patches are designed to fine-tune three pre-trained ResNet-50 networks that
characterise the nodules’ overall appearance, voxel and shape heterogeneity, respectively.
The nine KBC submodels are jointly used to classify the nodules with an adaptive weighting
scheme learned during the error back propagation, which enables the MV-KBC model to be
trained in an end-to-end manner. The penalty loss function is used for better reduction of the
false-negative (FN) rate with a minimal effect on the overall performance.
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Other targets

Beyond the classification of pulmonary tissue, the train of DL architecture is also explored
with other imaging targets, as reported in the following works.

Roth et al. (2016) explored the possibility of improving the ACC of CAD systems with
CNN. Three pre-existing CAD systems were used for selection of lesion candidates on three
different datasets: 59 patients for scleroticmetastases detection, 176 patients for LNdetection,
and 1186 patients for colonic polyp detection. They explored 2D representation from a ROI
and 2.5D representation with the extraction of a VOI. Random observations were explored
as a data augmentation approach to avoid overfitting and improve the sensitivity with scale
transformations, random translations and rotations. Next, these views were used to train
deep CNN. Their results showed that CNN could be used to improve CAD performance with
reduction of FPs: CAD sensitivities improved from 57% to 70% for sclerotic metastases,
43% to 77% for LNs and 58% to 75% for colonic polyps.

van Tulder and de Bruijne (2016) used RBMs to learn optimised features for 1) lung tissue
classification and 2) airway detection. On the lung tissue dataset, the effects of combining
generative and discriminative learning objectives were studied. They concluded that adding
label information and discriminative learning to the standard RBM helped to produce more
appropriate filters than generative or discriminative learning alone, random filters and two
standard filter banks: the Leung–Malik and Schmid filter banks. On the airway dataset, the
effects of enlarging the size of the representation with more hidden nodes in the RBM, the
effects of the filter size and the number of filters on the classification performance were
studied. The effect of the number of filters or the number of hidden nodes showed that
discriminative learning was less significant for models with more hidden nodes.

Ali et al. (2017) present a classification method based on unsupervised feature extraction
and supervised fine-tuning strategies to classify the saturated and unsaturated regions in case
of CT saturation. In other words, if protection system is subjected to a CT saturation, the
proposed method will classify the different levels of saturation (heavy, light, and normal).
Unsupervised feature extraction is made with AEs and CNNs. The authors claim that the
results show that the method yields high classification accuracy and has the advantages of
simplicity, easier interpretation, model complexity reduction, and better learning capability.

Cha et al. (2017a) studied the impact of radiomics-based predictive models to discern
chemotherapy complete or non-complete responses in bladder cancers using pre and post
treatment CT images. For that, threemodelswere investigated, DL-CNN,RF-SL (a radiomics
feature based approach), RF-ROI (radiomics features from image patterns). 82 patients were
used as training data and 41 patients were collected as test set. The RF-SL performed better
than DL-CNN and DL-CNN better than RF-ROI which means that the DL-CNNmethod was
able to better capture the characteristics of ROIs in order to identify responders to treatment.
The obtained results were in the range of 0.69 to 0.77.

Gao et al. (2017) inspected the application of an integrative 2D and 3D CNNs for the
classification of CT brain images divided into three groups (57 Alzheimer disease (AD), 115
lesions and 113 normal ageing)with the intent of providing information for the early diagnosis
of AD. Image slices were used to train the 2D CNN model while in the 3D path, small cubes
were applied. The fusion of the two CNNs seven layers networks was made based on the
average of softmax scores obtained from both networks that determine a score of normalised
class probabilities. The authors, surprisingly, claim that 2D approaches outperform their 3D
counterparts. The justification lies in the fact that CT data had low depth resolution leading
to worsen the 3D results. The proposed 2D/3D CNN fusion method achieved the best results
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with 87.62% of ACC rate, indicating that the combination of 2D and 3D creates a synergy
capable of obtaining characteristics obtained in each network.

Miki et al. (2017) aim at automating the dental filing process by using dental X-ray
images. ROIs including single teeth are extracted from CT slices and classified into 7 tooth
types. Fifty two CT volumes were randomly divided into 42 training and 10 test cases, and
the ROIs obtained from the training cases were used for training an AlexNet CNN. For
examining the sampling effect, random sampling was performed 3 times, and training and
testing were repeated. The average classification accuracy using the augmented training data
by image rotation and intensity transformation was 88.8%. The authors highlight that, with
this approach the is no need for precise tooth segmentation.

Bibault et al. (2018) predict complete response from pre-treatment features. Radiomic
features were extracted from the tumour volume from the treatment planning CT and a
DNN was created to predict complete response. The results were compared to LR and SVM.
Ninety-five patients were included in the final analysis, of which 22 (23%) had pathologic
complete response after chemoradiation. The DNN predicted complete response with an
80% accuracy, which was better LR (69.5%) and SVM (71.58%). These results may help
to identify patients who would benefit from a conservative treatment, rather than a radical
resection.

Lee et al. (2018) differentiate small renal masses (SRM) into angiomyolipoma without
visible fat (AMLwvf) and clear cell renal cell carcinoma (ccRCC) using a concatenation of
hand-crafted and deep features, and RF classifier. The 1000–4000-dimensional deep features
were extracted from the ImageNet pretrained deep learning model with the SRM image
patches. In experiments, the combinations of four deep learning models, AlexNet, VGGNet,
GoogleNet, and ResNet, and four input image patches, including original, masked, mass-
size, and texture image patches, were compared and analysed. The authors observe that (a)
the concatenation of features outperformed using either set of features alone, (b) AlexNet
showed generally the best performances among the CNN models, and (c) texture image
patches not only achieved competitive performances among the input patches, but also steady
performance regardless of CNN models.

Zreik et al. (2018) apply a multi-task recurrent CNN on multi-planar reformatted images
of the coronary arteries on coronary CT angiography scans of 163 patients. First, a 3D
CNN is utilised to extract features along the coronary artery. Subsequently, the extracted
features are aggregated by a RNN that performs two simultaneous multi-class classification
tasks. In the first task, the network detects and characterises the type of the coronary artery
plaque (no plaque, non-calcified, mixed, calcified). In the second task, the network detects
and determines the anatomical significance of the coronary artery stenosis (no stenosis, non-
significant i.e. < 50% luminal narrowing, significant i.e. > 50% luminal narrowing). For
detection and classification of coronary plaque, the method achieved an accuracy of 0.77.
For detection and classification of stenosis, the method achieved an accuracy of 0.80.

Das et al. (2019) propose a watershed Gaussian based DL technique for effective delineate
the cancer lesion in CT images of the liver. Initially, the liver is separated using marker con-
trolled watershed segmentation process and then the cancer affected is was segmented using
GMM. After tumour segmentation, various texture features are extracted from the segmented
region. These segmented features were fed to a DL classifier for automated classification of
three types of liver cancer i.e. hemangioma, hepatocellular carcinoma and metastatic carci-
noma. A classification accuracy of 99.38%, Jaccard index of 98.18%, were achieved in a 225
images database.

Shaish et al. (2019) try to predict themaximum standardised uptake value (SUV) of lymph
nodes. Consecutive initial staging PET/CT scans from 2017 patients with pathologically
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proven malignancy were collected. Two blinded radiologists selected one to 10 lymph nodes
from the unenhanced CT portion of each PET/CT examination. Lymph nodes were cropped
and used with the primary tumour histology type as input to a 3D CNN. An SUV of 2.5 or
greater was defined as FDG avid. The predicted SUV was associated with the real SUV and
with FDG avidity, with an AUC value of 0.85.

Table 9 recapitulates the main characteristics of the analysed works and Table 10 of the
conference works with CT applications on classification task. The type and the number of
instances that are included in the datasets are mentioned as well as the best performance
results.

Conclusions In the classification context, a variety of DL techniques, both supervised
and unsupervised, have been used, namely CNN, SAE, SDAE, DNN, DBN, and RBM, as
full training classifier, deep feature extractors, and transfer learning. The works focused on
feature extraction can be divided into: works that used DL techniques as feature learning
to be further fed into a traditional classifier (with and without the combination of features
obtained by traditional descriptors), works that extracted features from CNNs pre-trained in
non-medical images, and works that used deep architectures to classify the training instances
fed with features obtained by traditional descriptors. These studies are limited in two aspects:

• The features were often extracted with 2D approaches, lacking features based on volu-
metric information that may be significant to pathology stage and treatment assessment.

• The models were built taking into consideration a single diagnostic data source, without
considering the relationship within multiple sources of data that are commonly used in
the clinical practice.

Observing Tables 9 and 10, it is clear that most studies using CT data for classification
systems are applied to lung diseases, particularly lung nodules. The reason is two-fold: lung
nodules are well identified in CT images and several public datasets are available. A common
problem in these studies is the FP rate, due to the fact that some anatomical locations naturally
exhibit high density and are mistaken for tumours.

4.3.2 PET applications

FDG-PET images are not only useful for the analysis of pathologies characterised by regions
of abnormally high uptake, as tumours but also for low metabolism regions as AD.

Ypsilantis et al. (2015) investigate the possibility of creating a system with the capability
to predict, from a scan acquired before the treatment, the patient’s reaction to chemotherapy.
They compare two main approaches, tested on samples from 107 patients with esophageal
cancer. The standardised one was to extract a large number of features with recurrent image
descriptors such as GLCM, followed by its application in statistical classifiers: LR, gradient
boosting, RFs, and SVMs. On the other hand, in order to use directly the data, they used
a CNN, 3S-CNN. The inputs were triplets of adjacent slices of the ROI after having seg-
mented the tumour. In addition, they implemented a simpler architecture 1S-CNN which
considers each slice individually. In this case, as they were only focused on a very specific
esophageal cancer, they have ignored spatial and anatomical information which does not
include tumours that spread throughout the body. Their system is highly dependent on an
effective pre segmentation of the tumour. They claim to achieve average 73.4% ACC with
the 3S-CNN algorithm.

Cheng and Liu (2017) proposed a system based on the combination of several 2D CNNs
and RNNs for AD classification diagnosis from 3D PET images. Their method was evaluated
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on PET images from 339 subjects including 93 AD patients, 146 mild cognitive impairment
(MCI) and 100 normal controls (NC) from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. The PET volume was firstly decomposed into 2D images slices in coronal,
sagittal, and axial axis and the resulting slices were assembled into groups each composed of
15 slices. Thus, each group were used as an input of 2D CNN with the purpose of capturing
intra-slice attributes. Each deep CNN consists of 5 convolutional layers, 2 max pooling
layers, and 2 fully connected layers and 1 softmax layer. To discover inter-slice features, two
stacked Bidirectional-Gated Recurrent Units (GRUs) of RNN were implemented with the
feature vectors as input, previously produced by 2D CNNs. Then, the network was followed
by two fully connected layers and a softmax layer to make the final classification prediction.
Their method achieved AUC of 95.28% for classification of AD versus NC and 83.90% for
classification of MCI versus NC.

Singh et al. (2017) also worked on the AD diagnosis problem. The developed method
consisted of max-pooling and mean-pooling on the 3D PET images to make them 2D and to
reduce the dimension of features from 79x95x79 to a one-dimensional (1D) vector of size
4050. Additionally, further dimensionality reduction using Probabilistic Principal Compo-
nent Analysis was performed reducing the number of features from 4050 to the range of
250 to 300 of features. Finally, a five hidden layers MLP performed binary classification.
They complete their study with the inclusion of demographic features, age and gender, which
improved prediction results. The dataset consisted of 186 cognitively unimpaired (CU) sub-
jects, 336 MCI subjects with 158 Late MCI and 178 Early MCI, and 146 AD patients. The
F1-score from the best results for the classification of FDG-PET data with and without demo-
graphics additional features was 0.9812 and 0.9430 respectively. Also, max-pooling achieved
superior performance in the majority of the binary classification experiments compared to
mean-pooled features.

Choi and Jin (2018) aimed to develop a system to predict future MCI patients and select
subjects that could convert to AD, using PET images of 139 patients with AD, 171 patients
with MCI and 182 normal subjects. The first part corresponded to train a CNN with AD and
NC for classification purposes. The architecture used consisted of three convolution layers
and one fully connected layerwith two types of PETdata as two channel data: FDGandAV-45
(a 4D vector as input). Following, the trained network was further used to predict cognitive
outcome in MCI subjects, whether they would transform to AD or not. They claimed to
achieve 96% of ACC for the differentiation between AD and NC and 84.2% of ACC in
predicting MCI conversion.

Liu et al. (2018a) propose a classification framework based on the combination of 2D
CNNs and RNNs, which learns the intra-slice and inter-slice features for classification of AD
after decomposition of the 3D PET image into a sequence of 2D slices. The 2D CNNs are
built to capture the features of image slices while the GRUs of RNNs is cascaded to learn
and integrate the inter-slice features for image classification. The method is evaluated on the
baseline FDG-PET images acquired from 339 subjects including 93 AD patients, 146 MCI
and 100 NC from ADNI database. Experimental results show that the method achieves an
AUC of 95.3% for AD versus NC classification and 83.9% for MCI versus NC classification.

Pereira (2018) focus on the evaluation of response to treatment in Hodgkin Lymphoma.
The pipeline includes an image registration step to extract the VOIs (Pereira et al. 2018), and
data augmentation with simultaneous random rotations on the three axes and with rotation,
scaling, shear, and skew transformations. Experiments with several different CNNs archi-
tectures were performed, and best results were achieved with a 4 layer network with two
convolutional layers followed by two fully connected layers for 750 training samples and
a batch size of 5. The results obtained from a real dataset of 163 patients with Hodgkin
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Lymphoma from IPO-Porto achieved 0.88 of MAE and 0.99 of average MAE in classifying
the exams into the 5 classes Deauville scale.

Schwyzer et al. (2018) evaluated whether machine learning may be helpful for the detec-
tion of lung cancer in FDG-PET imaging in the setting of ultralow dose PET scans. A transfer
learning approach to perform binary classification of 2D PET image slice was implemented
by using a pre-trained deep residual neural network. The database consists of 3936 PET slices
including images in which the lung tumour is visually present and image slices of patients
with no lung cancer were exported. The AUC was 0.989, 0.983 and 0.970 for standard dose
images (PET100%), and reduced dose PET10%, and PET3.3% reconstruction, respectively.
A sensitivity of 95.9% and 91.5% and a specificity of 98.1% and 94.2%, at standard dose
and ultralow dose PET3.3%, respectively, were also obtained.

Table 11 highlights themain characteristics (anatomic interest, dataset quantification, eval-
uation metric and best performance result obtained) of the analysed works with classification
purpose applied on PET modality alone.

Conclusions Under PET modality, full training approaches have been explored for binary
classification. The majority of the works decomposed the 3D image into a sequence of 2D
image slices, not taking into account volumetric information which may be important for
the classification of certain degrees of disease. Analysing Table 11, we can easily verify that
there has been a growing interest to FDG-PET for AD and AD risk. The availability of public
datasets can be a reason for this tendency. PET information processing is an under-studied
topic. We anticipate that these works will inspire more research that the building of DL based
systems for FDG-PET data analysis.

4.3.3 CT and PET applications

As previously seen, some work using information from both PET and CT, fusing the infor-
mation somewhere along the proposed pipeline. Fusion can typically be at the feature level,
at the classifier level, or at the decision level Guo et al. (2018).

Qiang et al. (2017) proposed a pulmonary nodule diagnosis approach with feature extrac-
tion using a deep supervised AE. The dataset consisted of 120 PET/CT scans from patients
with lung cancer including 2810 pulmonary nodules. A high-level discriminative feature
representation in PET/CT was extracted from SDAE based on extreme learning machine
(ELM), SDAE–ELM. Next, two methods were used to fuse the dual-modal features informa-
tion: decision level fusion where PET and CT images were processed independently using
one unique classifier for each, and feature level fusion where one LR is used for the concate-
nation of both modalities. Their method reached 91.75% of sensitivity at 1.58 FPs per scan
with better discriminative results than other DL diagnosis methods like AE, deep AE and
RBM.

For classifyingmediastinal LNmetastasis from FDGPET/CT images,Wang et al. (2017a)
compared a DLmethodwith four other mainstreammachine learning. The fivemethods were
evaluated using 1397 LNs collected from PET/CT images of 168 patients. The CNN architec-
ture used was AlexNet with five layers and the inputs were axial image patches cropped from
the CT and PET SUV images. The authors claim to demonstrate that the performance of CNN
is not notably different from the long-established methods (sensitivity = 84%, specificity =
88%, ACC= 86%, AUC= 0.91). Although classical machine learning techniques provided
the best results (ACC = 81–85%, AUC = 0.87–0.92), they were optimised and tested with
a variety of parameters. Only one CNN architecture was tested without further research on
improving the performance.
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Table 12 Main characteristics of the studies reviewed in Sect. 4.3.3: CT and PET classification

Authors Anatomic
interest

Dataset Evaluation metrics Results

Qiang et al.
(2017)

Pulmonary
nodules

120 PET/CT scans from
patients with lung
cancer including 2810
pulmonary nodules

Sensitivity, FPs per
scan

91.75%, 1.58

Wang et al.
(2017a)

LN 1397 LNs collected from
PET/CT images of 168
patients

Sensitivity,
specificity, ACC,
AUC

84%, 88%, 86%,
and 0.91

Table 12 presents the characteristics (anatomic interest, dataset, evaluationmetric and best
performance result obtained) of the examined works with classification purpose integrating
PET and CT information.

Conclusions As distinctive works with different purposes were analysed in this section,
a direct comparison of the results represented in Table 12 is not meaningful. The first one
employed a CNN in a full training way for LN metastasis classification. Despite lung cancer
diagnosis being mainly done recurring to CT images (as stated on Sect. 4.3), the second
work employed SDAE to extract deep features from PET/CT images for pulmonary nodule
diagnosis achieving comparable results. However, these studies have a common point. Images
from both modalities, PET and CT, were mixed into the network. The fusion is, however,
done at either feature or decision level. No attempts of fusion the information at the classifier
level have yet been made.

4.4 Other applications

The followingworks describes others contributions of DL techniques to various understudied
tasks, namely noise and artefacts reduction, reconstruction, estimating TOF, generating PET
images, and radiation adaptation. The main features of the analysed studies are summarised
in Tables 13, 14, 15, 16, and 17.

4.4.1 CT applications: noise and artefacts reduction

Due to growing concerns about the overall radiation exposure to a patient, CT devices have
been designed to lower the dose (Costello et al. 2013). The most common way to lower the
radiation dose is to reduce the X-ray flux by decreasing the operating current and shortening
the exposure time of an X-ray tube. However, such a technique results in reduced image
quality with the cost of the appearance of many artefacts, which may obscure or simulate
pathology (Boas and Fleischmann 2012).

Chen et al. (2017a) used a residual encoder-decoder CNN to strengthen the quality of
LCT images to normal-dose images. Their method combined AE and CNN consisting of 10
layers, including 5 convolutional and 5 deconvolutional layers. From the encoder-decoder
network, a residual learning with shortcut connections was added to supplement the structure
lost through multiple layers. The normal dataset included 7015 normal-dose CT images from
the National Cancer Imaging Archive (NCIA) and the low-dose images were produced by
applying Poisson noise. The proposed network achieved, in the testing dataset: peak-signal-
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Table 15 Main characteristics of the studies reviewed in Sect. 4.4.3: PET estimating TOF

Authors Dataset Evaluation metrics Results

Berg and Cherry
(2018)

15,000
coincidence
waveforms

Improvement of
coincidence timing
resolution

23%

Table 16 Main characteristics of the studies reviewed in Sect. 4.4.4: PET generation

Authors Dataset Evaluation metrics Results

Bi et al. (2017a) 50 PET/CT studies volumes
from 50 lung cancer
patients

MAE, PSNR 4.60, 28.06

Ben-Cohen et al.
(2017)

25 CT and PET pairs
constrained to the liver
region

TPR, FPR 92.3%, 0.25

Ben-Cohen et al.
(2019)

60 CT and PET pairs
constrained to the liver
region

MAE, PSNR 0.72, 30.22

Table 17 Main characteristics of the studies reviewed in Sect. 4.4.5: PET radiation adaptation

Authors Anatomic
interest

Dataset Evaluation
metrics

Results

Tseng et al.
(2017)

NSCLC 114 NSCLC patients RMSE 0.5 Gy

Xiang et al.
(2017)

Not specified LPET, SPET, MRI for
16 subjects

NMSE,
PSNR

24.76, 0.0206

Wang et al.
(2018b)

MCI 16 subjects (8 normal
and 8 MCI)

NMSE,
PSNR

24.5, 0.025

to-noise-ratio (PSNR)= 43.7871± 2.01, RMSE= 0.0069± 0.0007, and structural similarity
index (SSIM) = 0.9754 ± 0.0086.

The same team, in Chen et al. (2017b), proposes a noise reduction method for LCT via
deep learning without accessing original projection data. A CNN is used to map LCT images
towards their corresponding normal-dose counterparts in a patch-by-patch fashion. Results
were assessed using 7015 CT normal-dose images from 165 patients including different parts
of the human body, downloaded from NCIA. In terms of quantitative metrics, PSNR, RMSE
and SSIM were used, achieving 42.1514, 0.0080, and 0.9707, respectively.

Kang et al. (2017) proposed an algorithm for LCT reconstruction that uses deep CNN. In
order to decompose the components of noise, a directional wavelet transform as a contourlet
transform was used. Then, the deep networks composed of 24 convolution layers were used
to de-noise accepting wavelet coefficients as input. In parallel, for comparison purposes,
a baseline CNN was trained whose input and output layer were images. The dataset was
generated from the projection data of 2016 CT low-dose Grand Challenge using a filtered
backprojection algorithm. The original datawas composed of 3642 slices of 3DCTprojection
data with normal-dose and quarter-dose for the training set and 2101 slices for the testing set.
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Their experiments proved that the wavelet-domain CNN was effective in removing complex
noise patterns compared to existing model-based iterative reconstruction methods.

Wolterink et al. (2017) propose to train a CNN jointly with an adversarial CNN to estimate
routine-doseCT fromLCTandhence reduce noise.AgeneratorCNNwas trained to transform
LCT into routine-dose CT using voxelwise loss minimization. An adversarial discriminator
CNNwas simultaneously trained to distinguish the output of the generator from routine-dose
CT. The performance of this discriminator was used as an adversarial loss for the generator.
Experiments were performed using non-contrast-enhanced cardiac CT scans of 28 patients.
For each patient, two scans were acquired, at 20% and 100% routine clinical dose. The
results showed that training with voxelwise loss resulted in the highest PSNR with respect
to reference routine-dose images.

Shan et al. (2018) introduce a conveying path-based convolutional encoder-decoder
(CPCE) network in 2D and 3D configurations within the GAN framework for LCT denois-
ing. A novel feature of this approach is that an initial 3D CPCE denoising model can be
directly obtained by extending a trained 2D CNN, which is then fine-tuned to incorporate 3D
spatial information from adjacent slices. Based on the transfer learning from 2D to 3D, the
3D network converges faster and achieves a better denoising performance when compared
with a training from scratch. Experimental data stem from an authorised clinical LCT dataset,
which was made for the 2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand Challenge.
This dataset included normal-dose abdominal CT images that were taken from 10 anonymous
patients and the corresponding simulated quarter-dose CT images. Results are as follows:
PSNR = 30.136, SSIM = 0.905, perceptual loss = 1.85, and texture matching loss = 67.63.

Tang et al. (2018) focus on a pre-processing method for CT that uses stacked GAN
(sGAN) with the goal of improving lesion segmentation. The first GAN reduces the noise
in the CT image and the second GAN generates a higher resolution image with enhanced
boundaries and high contrast. Tests have been made on whether sGAN can yield improved
lesion segmentation using asmetrics recall, precision andDice score. Experimental results on
theDeepLesion dataset demonstrate that sGAN ismore effective than four other enhancement
approaches

Wang et al. (2018a) propose an iterative residual-artefact learning CNN iterative residual-
artefact learning CNN (IRLNet) approach for reconstruction. Specifically, the proposed
IRLNet estimates the high-frequency details within the noise and then removes them itera-
tively; after eliminating severe streaks in the LCT, the residual low-frequency details can be
processed through the conventional network. Moreover, the proposed IRLNet scheme can be
extended for robust handling of quantitative dual energy CT/cerebral perfusion CT imaging,
and statistical iterative reconstruction. Data from 2016 NIH-AAPM-Mayo Clinic Low-Dose
CT Grand Challenge was used for evaluation and the experimental results demonstrate that
IRLNet outperforms other CNN based approaches in reducing the image noise and streak
artefacts efficiently at the same time as preserving edge details.

Yang et al. (2018) introduce a GAN with Wasserstein distance and perceptual similarity.
The Wasserstein distance is a key concept of the optimal transform theory, and improves the
performance of the GAN. The perceptual loss compares the perceptual features of a denoised
output against those of the ground truth in an established feature space, whereas the GAN
helps migrate the data noise distribution from strong to weak. Experiments made on patches
extracted from theMayo Challenge dataset demonstrated that using the proposed GAN helps
improving image quality and its statistical properties.

Yi and Babyn (2018) train an adversarial network and a sharpness detection network to
guide the training process.CT scans of a deceased pigletwere obtained at different dose levels,
ranging from 300 mAs down to 15 mAs. At each dose level, 850 images of a size 512× 512
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were obtained. The mean standard deviation of 42 smooth rectangular homogeneous regions
(size of 21 × 21, 172.27 mm2) was computed as measure of the noise level. Experiments
show that the results of the proposed method have small resolution loss and achieve better
performance relative to the compared state-of-art methods both quantitatively and visually.

You et al. (2018) propose a 3D noise reduction method, called structurally sensitive multi-
scale generative adversarial net, to improve the LCT image quality. Different loss functions
for training denoising models are investigated. Experiments using the Mayo dataset show
that the method can effectively preserve the structural and textural information in reference
to the normal-dose CT images and significantly suppress noise and artefacts. Qualitative
visual assessments by three radiologists further demonstrate that the method retrieves more
information and outperforms competing methods.

With the purpose of suppressing metal artefacts, Zhang and Yu (2018) exploited a CNN,
which merges data from the original and corrected images. The database was generated using
74metal-free and 15metal shapes (such as dental fillings, hip prostheses, wires). In total, 100
sampleswere created. Following, 10,000 patches from the databasewere extracted to train the
CNN composed of 4 convolutional layers according to the following workflow. The metal
segmentation and artefact reduction were initially done. Next, another artefact reduction
was performed with the trained CNN to replace metal affected projections with the forward
projection, followed by the filtered back projection reconstruction. The effectiveness of the
proposed method was also validated on clinical data. Experimental results demonstrated that
the proposed method was able to distinguish tissue structures from artefacts, obtaining a
RMSE of 22.7 of the original and corrected images with respect to the reference images and
a SSIM of 0.977 in the numerical simulation study.

He et al. (2019) propose a strategy for model-based iterative reconstruction (MBIR) that
addresses prior knowledge design and MBIR parameter selection in one optimisation frame-
work. Specifically, a parameterized plug-and-play alternating directionmethod of multipliers
is proposed for the general penalised weighted least-squares model, and then, the parame-
terised plug-and-play prior and the related parameters are optimised simultaneously in a
single framework using a large number of training data. Experimental results obtained on
clinical patient datasets demonstrate that the proposed method can achieve promising gains
over existing algorithms for LCT image reconstruction in terms of noise-induced artefact
suppression and edge detail preservation.

Lee et al. (2019) used a FCN and a wavelet transform to predict high quality images. To
reduce the spatial resolution loss of predicted images, the pooling layer was replaced by a
wavelet transform. Three different domainswere evaluated—the sinogramdomain, the image
domain, and the hybrid domain. To train and develop the model, TCIA dataset was used.
The authors claim that streak artefacts, which generally occur under sparse sampling con-
ditions, were effectively removed. However, image characteristics of fine structures varied.
In the sinogram domain, some image noise remained; in the image domain, a blurring effect
occurred. The hybrid domain sparsely sampled reconstruction was able to restore images to
a quality similar to fully sampled images.

Maier et al. (2019) present a CNN to derive scatter estimates in real time. Since gold
standard scatter estimation approaches rely on MC photon transport codes, the proposed
CNN is trained to predict MC scatter estimates based on the acquired projection data. The
potential of the proposed strategy is demonstrated using simulations of cone-beam CT head,
thorax, and abdomen scans as well as measurements at an experimental table-top cone-beam
CT. To evaluate the performance for real data, measurements of an anthropomorphic head
phantomwere performed. Errorswere quantified by a comparison to a slit scan reconstruction.
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The achieved deviation is 6 HU. The authors also note that the proposed method is nearly as
accurate as the traditional MC simulations but is superior in terms of speed.

Wang et al. (2019) is interested in removing ring artefacts from cone-beam CT, while
retaining important texture details. The method starts by transforming ring artefacts in Carte-
sian coordinates to stripe artefacts in polar coordinates. AGAN loss function is then designed,
which includes three parts: unidirectional relative total variation loss, perceptual loss and
adversarial loss. Very deep residual networks are used for both the generator and discrimina-
tor. As conclusions, the authors state that the method improves the ability to generalisation
and fidelity for removing ring artefacts.

Table 13 outlines themain characteristics (anatomic interest, dataset, and best performance
results) of the previously discussed works on the CT modality.

Conclusions The success of LCT is determined by both the performance of the denois-
ing techniques and the capability of suppressing artefacts. Noise and artefact reduction are
important concepts and thus the research interest has been significant in CT dose reduction.
The quality of the acquisition makes large differences in how the images can be analysed.
Similarly to other applications of DL in CT, CNNs are the most popular technique. Analysing
Table 13, evaluation metrics based on the measurement of the similarity between two images
have been used, as well as visual inspection which is highly prone to subjectiveness. Most
of the datasets used were either artificial or composed of a very small number of scans. It
would be valuable to further test these approaches on large datasets used on real clinical use.

4.4.2 PET applications: reconstruction

In opposition to static PET imaging, dynamic PET imaging detects data in a series of frames.
The reconstruction has to guarantee temporal resolution. Image reconstruction can be con-
sidered as a dense prediction problem, where for each voxel/pixel, a model predicts a value
in the reconstructed image from the input data.

Cui et al. (2017) developed a reconstruction system for dynamic PET imaging preserv-
ing key features based on deep SAE and maximum likelihood expectation maximisation
(MLEM), with noise reduction. The process was divided into two main parts: the training in
which series of reconstructed images were the input of a SAE model and the reconstruction
part, firstly byMLEM, and then the reconstructed imageswere used as input to the SAEmodel
with the corresponding parameters obtained on the previous training. Due to the dynamic
nature of reconstruction, temporal features were also learned by the single-layer sparse AE.
Their method was tested on data obtained fromMC simulation in brain, Zubal phantoms, and
also on real patient whole-body PET data. Their system outperformed the traditional MLEM
algorithm and total variation regularization based method in noise reduction. The best results
obtained were (signal to noise ratio (SNR), Bias, Variance) 70.42, 0.0365, 0.0071 and 68.41,
0.0369, 0.009 on the Brain and Zubal phantom respectively It recovered more details and
was independent of the data size. Related to the real patient data reconstruction results, their
system produced a cleaner and smoother result, assessed by visual inspection.

Jiao and Ourselin (2017) proposed an alternative approach for PET reconstruction with
multi-scale FCN (msfCNN). For each pixel from the back projection of sinograms, the model
predicted a value in the reconstructed image or, in other words, the image reconstruction
process was regarded as a dense prediction problem using msfCNN. The model was only
trained using simulated data generated by brain scans in the ADNI database and tested on
real oncological and neurodegenerative data.
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To address the noise challenge characteristic of short dynamic scans, Spencer and Wang
(2017) develop a new kernel method. The proposed dual kernel approach enhances traditional
kernel-based dynamic PET image reconstruction techniques. The dual kernel combines a
non-local kernel with a local convolutional kernel that can be trained from image priors.
The approach is evaluated for shortened dynamic FDG-PET imaging using a digital brain
phantom. Simulation results have demonstrated that the dual-kernel approach can achieve
better image quality than both the standard reconstruction approach and the single kernel
approach.

Kimet al. (2018) propose an iterativePET reconstruction using aCNNprior. The denoising
CNN (DnCNN) method was used and the network was trained using regular dose images
as ground-truth and low dose images reconstructed from downsampled data by Poisson
thinning as input. A local linear fitting (LLF) function incorporated with DnCNN prior
is used to improve the image quality by preventing bias. By using the LLF function, the
method becomes robust to noise level changes. In the bias and variance studies, the method
outperforms conventional methods.

Inspired by the deep image prior framework, Gong et al. (2018) propose a personalised
network training method where no prior training pairs are needed, but only the patient’s own
prior information. The network is updated during the iterative reconstruction process using the
patient specific prior information and measured data. The maximum likelihood estimation is
formulated as a constrained optimisation problem and solved it using the alternating direction
method of multipliers algorithm. MRI and PET reconstruction was employed as an example
to demonstrate the effectiveness of the framework. Quantification results based on simulation
and real data show that the proposed reconstruction framework can outperformGaussian post-
smoothing and anatomically-guided reconstructions using the kernel method or the neural
network penalty. The same team, in Gong et al. (2019), also presents results for a lung patient
study and a brain patient study.

Table 14 outlines themain characteristics (anatomic interest, dataset, and best performance
results) of the previously discussed works on the PET modality.

Conclusions The presented studies used completely different approaches, datasets and eval-
uation metrics (Table 14). In general, the training process was not done with data of the same
complexity as the application, using either simulated or very small datasets. The proposed
models can be appropriately improved with more realistic training data. Furthermore, RNNs
would be a pertinent DL technique to be exploited under this application since they are
appropriate to use with sequential input data (in this case, a sequence of images).

4.4.3 PET applications: estimating TOF

In this proof-of-concept study, Berg and Cherry (2018) evaluated the use of CNNs to estimate
TOFs directly from coincident events. The waveform pairs were stored and labelled with the
ground-truth TOFs, which were obtained through the distance between the positron emitting
source and the coincident detectors. Two different configurations with a variable number of
layers for CNN architecture were compared: the fixed configuration that used small convo-
lutional filters and the tapered 6-layer configuration with the size of the filters progressively
decreasing along the layers. They claimed to improve coincidence timing resolution up to
23% and demonstrated the greater impact of CNN depth (number of layers) instead of filter
size and number of feature maps. The attraction of CNN to estimate TOF is that minimal
pre-processing is required.

Table 14 outlines themain characteristics (anatomic interest, dataset, and best performance
results) of the previously discussed work on PET modality.
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Conclusions The analysed study validates the use of DL techniques, in particular, CNN,
in a non-conventional application: the estimation of TOF. Although the input of this study is
not directly PET images, the waveforms are derived from it and this study can have a direct
impact on the PETmodality with a promising improvement of coincidence timing resolution
(Table 15).

4.4.4 PET applications: generating PET

With the purpose of reducing the time and resources spent on extra exams, there is an interest
in applyingDL to convert images betweendifferentmodalities (Ben-Cohen et al. 2017, 2019).
Also, to cope with the well known need of DL techniques of a lot of data to train (Domingues
et al. 2018), other works use data augmentation for the improvement of PET-based CAD
systems (Bi et al. 2017a). Concerning the techniques, GAN is the most used architecture (Bi
et al. 2017a; Ben-Cohen et al. 2017, 2019).

Bi et al. (2017a) developed a multi-channel GAN (M-GAN) to produce PET images that
takes the annotations (labels) to synthesise high uptake regions and the corresponding CT
images to constrain the appearance consistency. The Generator learns from the label and CT
images to produce a synthetic PET, while the discriminator learns from synthetic and real
PET. The dataset consisted of 50 lung cancer studies composed of a CT volume and a PET
volume. Only trans-axial slices that contained tumours were considered. The multi-channel
approach was compared to single channel approaches: using labels (LB-GAN) and using
only CTs (CT-GAN) and achieved the best results, with the lowest MAE of 4.60 and the
highest PSNR of 28.06. Furthermore, the M-GAN synthetic PET data created was used to
train a FCN to detect tumors and achieved comparable results (precision= 81.73%, recall=
52.38%, f-score= 63.84%) to using real PET images (precision= 88.31%, recall= 55.17%,
f-score = 66.38%), which shows that the data produced was realistic.

Ben-Cohen et al. have been publishing several works in the field (Ben-Cohen et al. 2017,
2019). Claiming to be the first work that explores CT to PET translation using DL, Ben-
Cohen et al. (2017) presents a system where a blended image is produced from the results of
a FCN and a GAN. An extension is then presented in Ben-Cohen et al. (2019) where instead
of blending the resulting images, the output image of the FCN is refined by a cGAN. The
dataset contains CT and PET pairs, constrained to the liver region. In Ben-Cohen et al. (2017),
evaluation is based on the tumor detection performance, where 24 out of 26 tumours were
detected at a cost of 2 FPs for the 8 test scans. In Ben-Cohen et al. (2019), reconstruction
evaluation was made with MAE and PSNR, achieving average values of 0.72 and 30.22,
respectively.

Table 16 outlines themain characteristics (anatomic interest, dataset, and best performance
results) of the previously discussed work on PET integrated with CT modality.

Conclusions There is an interest in applying DL approaches to convert between differ-
ent image modalities. The analysed studies aimed at converting CT images to PET images
obtained encouraging results for the complexity of the engaged task (Table 16) that need
more exploration to get a more secure system. However, the purpose of these studies can
be regarded as ambitious since different modalities have different expressed lesions. Some
lesions are only visible in one modality, so the translation of one modality to another is not
straightforward.
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4.4.5 PET applications: radiation adaptation

It is known that the radiation can cause adverse effects and it is thus of interest to apply
the least possible dose to the patients. The works reviewed in this section have as goal the
development of tools to aid in the definition of the radiation to apply (Tseng et al. 2017) or to
reconstruct high-quality images from low quality ones, where less radiation has been applied
to the patient (Xiang et al. 2017).

Tseng et al. (2017) explored a multicomponent deep reinforcement learning to develop
a dynamic clinical decision making in adaptive radiotherapy on historical treatment plans
for NSCLC patients. Reinforcement learning aimed to mimic how clinicians decide on the
dose fraction needed to be prescribed and are formulated as a Markov decision process. The
dataset contained NSCLC of 114 patients who received radiotherapy. The main framework
was composed of three neural networks components. First, a GANs was employed in order
to generate more radiotherapy patients data due to the small available dataset. Second, a
radiotherapy artificial environment was reconstructed by a DNN. Third, a deep Q-network
was applied to search for the optimal policy sequence for response-based dose adaptation.
They concluded that the deep reinforcement learning achieved similar results to real clinical
decisions that were applied in an adaptive dose escalation clinical protocol and could be used
to make recommendations to adjust the current treatment. Also, this approach needs extra
validations on larger datasets.

Xiang et al. (2017) estimate high-quality standard dose PET (SPET) from the combination
of low-quality low-dose PET (LPET) and the accompanying Tl-weighted acquisition from
MRI. CNNs are adapted to account for the two channel inputs of LPET and T1, and directly
learn the end-to-end mapping between the inputs and the SPET output. Then, multiple CNN
modules are integrated following the auto-context strategy, such that the tentatively estimated
SPET of an early CNN can be iteratively refined by subsequent CNNs. The dataset contains
16 subjects, and performance is evaluated with NMSE and PSNR. The average PSNR scores
are 24.76, while average NMSE scores are 0.0206.

Wang et al. (2018b) also estimates SPET. In order to achieve this, the authors use a 3D
cGAN, where the model is conditioned on an input LPET and generates a corresponding
output SPET. Specifically, to render the same underlying information between the LPET
and SPET, a 3D U-net-like deep architecture that combines hierarchical features by using
skip connection is designed as the generator network to synthesise the SPET. In order to
guarantee the synthesised PET to be close to the real one, the estimation error loss in addition
to the discriminator feedback is taken into considerationwhen training the generator network.
Furthermore, a concatenated 3D cGANbased progressive refinement scheme is also proposed
to further improve the quality of estimated images. Validation was done on a dataset with 8
normal subjects and 8 subjects diagnosed as MCI. The authors conclude that the adversarial
training brings higher PSNR and lower NMSE for both the normal and the MCI subjects.

Table 17 outlines the main characteristics of the previously discussed works on the PET
modality for radiation adaptation.

Conclusions To reduce the patient’s exposure to radiation, while maintaining the high
quality of the images is, without a doubt, a very important application. We foresee that the
amount of works on this topic will substantially increase in a near future.
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5 Discussion

Medical imaging analysis has benefited from the research in DL techniques. In our study, a
comprehensive review of DL techniques applied to two different medical exam modalities
was included, as well as their combination. Concerning CT, DL techniques were used for
segmentation, classification, detection, pathology stage and treatment assessment, and noise
and artefacts reduction. The relative availability of CT data has likely promoted DL progress
in this modality. With regard to PET images, DL techniques were used for classification,
prediction of response to treatment, reconstruction, and estimating TOF. There are a limited
amount of work directed to PET. The majority of the revised works used private datasets,
which prevent the replication and further improvement of results by other researchers. Also,
the number of patients enrolled in most of these studies can be considered small.

In terms of dimensionality, we can categorise DL schemes that 2D or 3D data as input.
Most of the (pre-trained) CNNs are designed for 2D natural images. They might be not well
suited for medical imaging analysis, since some medical images are 3D volumetric images,
such as CT and PET. Compared to 2D CNN, 3D CNN with 3D convolution operations, can
better model and preserve the spatial neighbourhood and the 3D spatial information.

DL techniques have been proposed as an alternative to traditional feature-based
approaches. But the change conducted by DL has not made feature-based approaches dis-
carded. There are cases where these traditional approaches or the combination of both
approaches obtained better results.

Despite showing encouraging results, there are multiple drawbacks to be resolved before
the introduction of DL techniques into clinical workflow. These techniques are highly influ-
enced by the quality and amount of training data. They require a large number of training
images for determining a large number of parameters which directly implies a high compu-
tational cost. Not only the unavailability of image data but also relevant labelling for these
images are a current problem. The tendency of overfitting is also a factual issue. Considering
the differences on imaging acquisitions, the evaluation of methods requires progress, in order
to prove their prevalent usefulness. Often classification is presented as a binary task which
is a simplification of the reality in medical imaging analysis. A solution is to turn the DL
approach into a multi-class system. Still related to data, the class imbalance is a common
problem. The detection of rare diseases is a typical example, where very few samples exist
to represent the disease cases. A system developed with an imbalance dataset may have the
consequence of assigning all items to a single majority class. It apparently outperformed
other approaches related to evaluation measures that do not take into account imbalanced
classes. Furthermore, interpretability is an important concept in the healthcare context. As
such, the black box nature of the current DL technique is a barrier. If the clinician cannot
validate the approach and understand the logical bases of the method, it will certainly not be
accepted.

Biomedical researchers may benefit from this survey for inspiration in future research for
CT and PET. It is expected that DL with image input will be the mainstream technology in
medical imaging in the next few years. As such, it is predictable that the design of novel DL
techniques will happen.
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